QUANTUM SYNTHESIZER

Bedienhandbuch Quantum OS 1.3

Inhaltsverzeichnis

Vorwort
Übersicht
Vorderseite
Rückseite & Anschlüsse7
Einführung
Über dieses Handbuch8
Allgemeine Sicherheitshinweise
Geeigneter Aufstellungsort9
Stromanschluss9
Betrieb9
Pflege
Bestimmungsgemäße Verwendung10
Inbetriebnahme und Anschlüsse
Aufstellung11
Anschliessen11
Die Anschlüsse auf der Rückseite 13
Der Steuerräder-Bereich16

Grundsätzliche Bedienung	18
An- und Ausschalten	18
Master Volume	18
Die Quantum Modus-Schalter	18
Das Touchscreen Display	19
Sound-Programme laden	20
Editieren von Parametern	22
Programme speichern	24
Die Sound-Parameter	26
Funktionsübersicht	26
Der Oszillator-Bereich	27
Der Wavetable-Oszillator	28
Der Waveform-Oszillator	44
Der Particle-Generator	51
Der Resonator	63
Der Oszillator-Mixer (OSC MIX)	71
Der Glide-Bereich	71
Der Dual Analog Filter-Bereich	72
Der Digital Former-Bereich	80
Der Hüllkurven-Bereich (Envelopes)	89
Der LFO-Bereich	95

Inhaltsverzeichnis

Der Komplex Modulator-Bereich	102
Der Effekte-Bereich (Effects)	112
Der Ausgangs-Bereich	130
Die Quantum-Modulationen	130
Die zusätzlichen Modi	136
Die Perform Modus-Seite	136
Die Layer Modus-Seite	148
Der Global-Modus	156
Laden & Editieren von Samples	167
Anhang	176
Über die Wavetable-Synthese	176
Einführung in die Waveform-Oszillatoren	178
Eine kurze Einführung in die Granular-Synthese	184
Einführung in das Synthesizer-Filter	184
Aktualisieren des Betriebssystems	186
FAQ - Häufig gestellte Fragen	187
Modulationsquellen und -ziele	190
Technische Daten	194
Glossar	195
Produktunterstützung	201

Vorwort

Vielen Dank für den Kauf des Waldorf Quantum Synthesizer von Waldorf. Dieser außergewöhnliche Hybrid-Synthesizer der Spitzenklasse verfügt über einzigartige Möglichkeiten zur Erzeugung einer ungeahnten Bandbreite von Klängen in bewährter Waldorf Qualität - und das alles Made in Germany!

Warum Sie dieses Handbuch lesen sollten?

Das größte Problem bei Handbüchern ist es immer, einen goldenen Mittelweg zwischen Einsteigern und Profis zu finden. Es gibt Anwender, die lesen eine Anleitung von vorne bis hinten, während andere sie noch nicht einmal anrühren. Letzteres ist natürlich keine gute Entscheidung, insbesondere wenn diese Anleitung ein Waldorf-Instrument beschreibt.

Natürlich dürfen Sie dieses PDF-Handbuch auch wieder in schliessen, aber Sie werden mit Sicherheit viel verpassen.

Wir versprechen Ihnen dafür auch viel Spaß beim Lesen und vor allem aber beim Komponieren und Produzieren mit dem Quantum.

Ihr Waldorf-Team

Hinweis

Waldorf Music übernimmt für Fehler, die in diesem Bedienhandbuch auftreten können, keinerlei Verantwortung. Der Inhalt dieser Anleitung kann ohne Vorankündigung geändert werden. Bei der Erstellung dieses Handbuchs wurde mit aller Sorgfalt gearbeitet, um Fehler und Widersprüche auszuschließen. Waldorf Music übernimmt keinerlei Garantien für dieses Handbuch, außer den von den Handelsgesetzen vorgeschriebenen.

Dieses Handbuch darf ohne Genehmigung des Herstellers – auch auszugsweise – nicht vervielfältigt werden.

Waldorf Music GmbH, Lilienthalstraße 7, D-53424 Remagen, Deutschland

Das Quantum Enwicklungsteam

Software:	Rolf Wöhrmann				
Hardware/Gehäuse:	Oliver Rockstedt, Frank Schneider, Rolf Wöhrmann				
Design:	Axel Hartmann				
Handbuch:	Holger Steinbrink				
Sounddesign:	Kurt Ader, Wolfram Franke, Reinhold Heil, SonicMayhem, Howard Scarr, Brian Transeau (BT)				
Revision:	1.3, April 2019				

() Besuchen sie unbedingt unsere Webseite für die Produktunterstützung und Downloads zum Quantum:

www.waldorfmusic.com/quantum

Besonderer Dank gilt

Thomas Brenner, Karsten Dubsch, Willie Eckl, Joachim Flor, Roger Keller, Jonathan Miller, Pierre Nozet, Miroslav Pindus, Winfried Schuld, Lukas Schütte, Michael von Garnier, Kurt 'Lu' Wangard, Haibin Wu und allen, die es nicht in diese Aufzählung gschafft haben.

Geräteübersicht

Vorderseite

1) Steuerräder-Bereich

- 5) Auswahlrad & Seitenmodus-Taster
- Oszillator-Bereich 6) Dual Analog
- 3) LFO-Bereich
- 4) Touchscreen-Display

- 6) Dual Analog Filter- & Digital Filter-Bereiche
- 7) Hüllkurven-Bereich
- 8) Komplex Modulator

2)

9) Effekte-Bereich

10) Ausgangs-Bereich

Rückseite & Anschlüsse

1) Kopfhörerausgang

5) USB-Anschlüsse6) SD-Kartenschacht

- 2) Main- & Aux-Ausgänge
- 3) Audio-Eingänge
- 4) Pedal-Eingänge

- 7) MIDI In / Out /Thru-Anschlüsse
- 8) Netzschalter & -Anschluss

Einführung

Über dieses Handbuch

Dieses Handbuch soll Ihnen den Einstieg im Umgang mit dem Quantum erleichtern. Darüber hinaus gibt es auch dem erfahrenen Benutzer Hilfestellung sowie Tipps bei seiner täglichen Arbeit.

Der Einfachheit halber sind alle technischen Bezeichnungen in dieser Anleitung entsprechend den Parameterbezeichnungen des Ouantum benannt. Es wurde jedoch versucht, weitgehend auf englische Fachbegriffe zu verzichten. Am Ende der Anleitung finden Sie ein Glossar, in dem die verwendeten Ausdrücke übersetzt und erklärt werden.

Zur besseren Übersicht gebraucht das Handbuch einheitliche Schreibweisen und Symbole, die untenstehend erläutert sind. Wichtige Hinweise sind durch Fettschrift hervorgehoben.

Verwendete Symbole

🗥 Achtung - Achten Sie besonders auf diesen Hinweis. um Fehlfunktionen zu vermeiden.

(!) Info – Gibt eine kurze Zusatzinformation.

- Anweisung Befolgen Sie diese Anweisungen, um die gewünschte Funktion auszuführen.
- ţţ Beispiel – Gibt ein kurzes Beispiel zur Demonstration einer Funktion.

Kennzeichnung von Parametern

Alle Taster, Regler und Parameterbezeichnungen des Qauntum sind im Text durch Fettdruck gekennzeichnet.

Beispiele:

- Drücken Sie den Load-Taster.
- Drehen Sie am Cutoff-Regler. ٠

Die verschiedenen Betriebszustände, Parameter und Menüseiten werden an geeigneter Stelle mittels Abbildungen veranschaulicht.

Der für eine Parametereinstellung zulässige Wertebereich ist durch Angabe der Unter- und Obergrenze in Kursivschrift gekennzeichnet. Dazwischen befinden sich drei Punkte.

Beispiel:

Cutoff 0...127

Allgemeine Sicherheitshinweise

Bitte lesen Sie die nachstehenden Sicherheitshinweise sorgfältig! Sie enthalten einige grundsätzliche Regeln für den Umgang mit elektrischen Geräten. Lesen Sie bitte alle Hinweise, bevor Sie das Gerät in Betrieb nehmen.

Geeigneter Aufstellungsort

- Betreiben Sie das Gerät nur in geschlossenen Räumen.
- Betreiben Sie das Gerät niemals in feuchter Umgebung wie z.B. Badezimmern, Waschküchen oder Schwimmbecken.
- Betreiben Sie das Gerät nicht in extrem staubigen oder schmutzigen Umgebungen.
- Achten Sie auf ungehinderte Luftzufuhr zu allen Seiten des Gerätes. Stellen Sie das Gerät nicht in unmittelbarer Umgebung von Wärmequellen wie z.B. Heizkörpern oder Radiatoren auf.
- Setzen Sie das Gerät keiner direkten Sonneneinstrahlung aus.
- Setzen Sie das Gerät keinen starken Vibrationen aus.

Stromanschluss

- Verwenden Sie nur das im Lieferumfang befindliche Anschlusskabel.
- Falls der mitgelieferte Netzstecker nicht in Ihre Steckdose passt, sollten Sie einen qualifizierten Elektriker fragen.
- Ziehen Sie den Netzstecker aus der Steckdose, wenn Sie das Gerät über einen längeren Zeitraum nicht benutzen.
- Fassen Sie den Netzstecker niemals mit nassen Händen an.
- Ziehen Sie beim Ausstecken immer am Stecker und nicht am Kabel.

Betrieb

- Stellen Sie keinerlei Behälter mit Flüssigkeiten auf dem Gerät ab.
- Achten Sie beim Betrieb des Gerätes auf einen festen Stand. Verwenden Sie eine stabile Unterlage.
- Stellen Sie sicher, dass keinerlei Gegenstände in das Geräteinnere gelangen. Sollte dies dennoch geschehen, schalten Sie das Gerät aus und ziehen Sie den

Netzstecker. Setzen Sie sich anschließend mit einem qualifizierten Fachhändler in Verbindung.

• Das Gerät kann in Verbindung mit Verstärkern, Lautsprechern oder Kopfhörern Lautstärkepegel erzeugen, die zu irreparablen Gehörschäden führen. Betreiben Sie es daher stets nur in angenehmer Lautstärke.

Pflege

- Öffnen Sie das Gerät nicht. Reparatur und Wartung darf nur von qualifiziertem Fachpersonal vorgenommen werden. Es befinden sich keine vom Anwender zu wartenden Teile im Geräteinnern. Außerdem verlieren Sie dadurch Ihre Garantieansprüche.
- Verwenden Sie zur Reinigung des Gerätes ausschließlich ein trockenes, weiches Tuch oder einen Pinsel. Benutzen Sie keinen Alkohol, Lösungsmittel oder ähnliche Chemikalien. Sie beschädigen damit die Oberflächen.

Bestimmungsgemäße Verwendung

Dieses Gerät ist ausschließlich zur Erzeugung von niederfrequenten Audiosignalen zu tontechnischen Zwecken bestimmt. Weitergehende Verwendung ist nicht zulässig und schließt Gewährleistungsansprüche gegenüber Waldorf Music aus.

Lassen Sie den Quantum niemals unbeaufsichtigt in der Nähe von Tieren, Kleinkindern oder Schwiegermüttern, da es unter Umständen zu ungewollten Interaktionen kommen kann.

Inbetriebnahme und Anschlüsse

Zum Lieferumfang des Waldorf Quantum gehören:

- der Waldorf Quantum Synthesizer
- ein Netzkabel
- ein gedruckter Schnelleinstieg

Bitte prüfen Sie nach dem Auspacken, ob alle genannten Teile vollständig vorhanden sind. Sollte etwas fehlen, wenden Sie sich bitte umgehend an Ihren Fachhändler.

Wir empfehlen Ihnen, die Originalverpackung des Quantum für weitere Transporte aufzubewahren.

Aufstellung

Stellen Sie den Quantum auf eine saubere, glatte Unterlage.

Anschliessen

Um mit dem Quantum arbeiten zu können, benötigen Sie: eine Netzsteckdose, ein Mischpult oder einen Verstärker sowie eine geeignete Abhöranlage oder einen Kopfhörer. Sie können auch einen Computer oder Hardware-Sequenzer anschließen, um die MIDI-Fähigkeiten Ihres Quantum zu nutzen.

So stellen Sie die notwendigen Verbindungen her:

- 1. Schalten Sie alle beteiligten Geräte aus.
- 2. Verbinden Sie den **Main Out**-Audioausgang des Quantum mit Ihrem Mischpult oder Audiointerface. Alternativ können Sie auch einen geeigneten Kopfhörer **Headphones**-Buchse anschliessen.
- 3. Wenn Sie einen Computer (mit Windows oder macOS) benutzen wollen, verbinden Sie dessen USB-Port mit dem **Computer USB**-Port des Quantum. Nutzen Sie hierfür ein geeignetes USB-Kabel. Der Quantum steht dann in Ihrem Computer automatisch als MIDI-Gerät zur Verfügung.
- 4. Bei Bedarf können Sie auch die MIDI-Anschlüsse des Quantum mit den MIDI-Buchsen eines Computer-MIDI-Interfaces oder anderen MIDI-Geräten verbinden.
- 5. Sie können auch den **Controller USB** Eingang nutzen, um einen geeigneten Class-Compliant USB-Hardware-Controller mit dem Quantum zu verbinden, welcher dann bestimmte Funktionen des Quantum steuern kann.

- 6. Verbinden Sie das mitgelieferte Netzkabel mit dem Quantum und schliessen es dann an einer geeigneten Netzsteckdose an.
- 7. Drücken Sie jetzt den Netzschalter auf der Rückseite des Quantum.
- 8. Dann schalten Sie den Computer ein (falls angeschlossen), danach das Mischpult und zuletzt Ihren Verstärker oder Ihre Aktivlautsprecher.
- (!) Der Einschaltvorgang des Quantum dauert etwa 10-15 Sekunden. Anschliessend ist der Quantum spielbereit!
- (!) Die Gesamtlautstärke des Quantum lässt sich mit dem **Master Volume**-Lautstärkeregler einstellen. Dieser regelt gleichzeitig auch den **Headphones**-Kopfhörerausgang, nicht jedoch den **AUX**-Ausgang.
 - Wenn Sie kein Mischpult verwenden, können Sie die Audio-Ausgänge des Quantum auch direkt an Ihren Verstärker oder Ihr Audiointerface anschließen. Benutzen Sie dazu einen Hochpegeleingang, oftmals mit Line In, Aux In oder Tape In bezeichnet.

- (1) Die Audio-Ausgänge des Quantum liefern ein unsymmetrisches Line-Signal. Achten Sie beim Anschluss an einen Verstärker, ein Mischpult oder ein Audio-Interface mit symmetrischen / unsymmetrischen Eingängen darauf, dass Sie TS-Mono-Klinkenkabel verwenden und nicht TRS-Stereo-Klinkenkabel.
- Bevor Sie den Quantum an die Stromversorgung anschließen, stellen Sie unbedingt die Lautstärke am Verstärker auf Minimum. Sie vermeiden damit Beschädigungen durch Ein- bzw. Ausschaltgeräusche. Die Audioausgänge des Quantum liefern ein Signal mit relativ hohem Pegel. Achten Sie darauf, dass das angeschlossene Wiedergabegerät für den hohen Pegel eines elektronischen Instruments geeignet ist. Benutzen Sie niemals den Mikrofon- oder Tonabnehmereingang eines angeschlossenen Verstärkers oder Audiointerfaces.

Die Anschlüsse auf der Rückseite

Der Quantum bietet zwei analoge Stereo-Audioausgänge und einen Kopfhörerausgang. Die Haupt- und Kopfhörerausgänge werden durch den Master Volume-Regler und des Compress(or)-Reglers beeinflusst. Verwenden Sie zwei TS-Mono-Klinkenkabel, um den Hauptausgang mit einem Mischpult zu verbinden. Der Quantum ist ein Stereo-Instrument. Es gibt keine inhärente Monoausgabe. Verwenden Sie daher Ihr Mischpult, um die Stereokanäle entsprechend zu verteilen.

Headphones-Ausgang und -Volume

Hier können Sie jeden Kopfhörer mit einem 6.3mm-Stereo-Stecker anschließen. Der Kopfhörerausgang liefert das gleiche Signal wie der Hauptausgang. **Headphones Volume**

regelt die Kopfhörerlautstärke des Ouantum zusätzlich zum Main Volume-

Headphones \Lambda

Lautstärkeregler. Verwenden Sie diesen Regler, um den Kopfhörerpegel zu verstärken oder zu dämpfen und um die Lautstärke und die Impedanz unterschiedlicher Kopfhörer anzupassen.

Main Out

Verbinden Sie die linke und rechte Buchse mit 6.3mm-Mono-Klinkenkabeln.

Aux Out

Verbinden Sie die linke und rechte Buchse mit 6.3mm-Mono-Klinkenkabeln. Der Aux-Ausgang liefert zunächst kein Signal, es sei denn, dies wird auf der **Layer**-Seite eingestellt (wenn Sie beispielsweise Split- oder Layer-Sounds verwenden).

MAIN OUT

AUX OUT

Die Aux-Ausgänge werde weder vom **Master Volume** noch vom Master-Kompressor beeinflusst. Weitere Informationen hierzu finden Sie im Kapitel zur Layer-Displayseite.

Audio In

Der Quantum bietet einen Stereo-Audioeingang (2x Mono-Buchsen), über den ein externes Audiosignal in eingespeist werden kann. Dieses Signal kann entweder für die Echtzeitverarbeitung durch den Signalpfad des Quantum geleitet

*⊘*waldorf

werden oder direkt mit dem Audiorecorder (**Global**-Modus) aufgezeichnet werden. Weitere Informationen hierzu finden Sie im Kapitel "Audio-" im Global-Modus.

Pedal-Eingänge

Mit einem an den **Sustain**-Eingang angeschlossenen Sustain-Pedal können Sie gespielte Noten halten, solange Sie das Pedal drücken. Da einige Pedale beim Betätigen den Kon-

PEDALS

takt öffnen und andere aber schließen, darf das verwendete Pedal beim Einschalten des Quantum nicht gedrückt werden. Dadurch kann sich der Quantum automatisch an das Pedal anpassen.

Über den **Control**-Pedal-Eingang können Sie jedes geeignete Pedal anschließen, z.B. ein Expression-Pedal. Um den vollen Regelbereich eines Pedals als Modulationsquelle nutzen zu können, muss dieses Pedal mit der "Control Pedal"-Funktion unter Global-> System-> Calibrate kalibriert werden.

Schließen Sie ein geeignetes passives Pedal oder eine beliebige aktive CV-Quelle (Steuerspannung im Bereich 0 -5V) eines Modularsystems an, um es als Modulationsquelle im Quantum zu verwenden.

Die USB-Anschlüsse

Der Quantum bietet zwei USB-Anschlüsse. Über den **Controller-USB-**Eingang können Sie jeden geeigneten, Class-Compliant USB-Hardware-Controller anschließen, um MIDI-Daten an die Steuerfunktionen

des Quantum zu senden. Sie können für die meisten Quantum-Parameter auch die MIDI-Learn-Funktion verwenden, um diese einem externen MIDI-Hardware-Controller zu steuern. Außerdem kann jedes Soundmodul mit einem entsprechenden USB-Eingang über die Quantum-Tastatur angeschlossen und abgespielt werden.

() Beachten Sie, dass Sie einen USB 2-Anschluss Ihres Rechners und auch ein USB 2-geeignetes Kabel verwenden, da es ansonsten zu Problemen bei der USB-Verbindung kommen kann.

Der **Computer-USB**-Anschluss verbindet den Quantum einem Computer oder iOS-Gerät mit den folgenden Systemanforderungen:

- Windows PC: Windows 7 oder neuer, einem USB 2-Port
- Apple: Intel Mac mit macOS 10.9 oder neuer, einem USB 2-Port

• Apple iPad mit iOS 9 oder neuer und einem optionalen Apple "Lightning to USB Camera Adapter"-Kabel

Der Computer-USB-Anschluss des Quantum ermöglicht das Senden und Empfangen von MIDI-Daten.

(!) Lesen Sie mehr zur Konfiguration von USB-MIDI im Kapitel zum Global-Modus.

Der SD-Kartenschacht

- () Beachten Sie, dass nur FAT- oder FAT32-formatierte SD-Karten unterstützt werden. Andere Formate funktionieren nicht.
- (!) Führen Sie die SD-Karte bitte **mit der Unterseite nach oben** herum ein, d.h. die Kontakte müssen nach oben zeigen. Dies liegt an der mechanischen Konstruktion des Quantums. Bitte führen Sie die Karte ohne Krafteinwirkung ein, um Schäden zu vermeiden.

Eine SD-Karte erlaubt folgendes:

• Betriebssystem-Updates des Quantum. Lesen Sie mehr hierzu im entsprechenden Kapitel!

- SD Card
- Import und Export von Audiodaten.

• Laden und Speichern Quantum-spezifischer Daten, z.B. Sound-Patches, Oszillator-Presets, Wavetables, MIDI-Maps usw.

MIDI In/Thru/Out

Obwohl wir es kaum glauben möchten, scheint der Quantum manchen Menschen nicht auszureichen. Daher haben wir eine elegante Möglichkeit

hinzugefügt, externe Soundmodule mit dem Quantum-Keyboard zu steuern: Verbinden Sie einfach den DIN-MIDI-Ausgang (oder den USB-Controller-Anschluss) mit Ihrem externen Gerät und legen Sie los! Für die Verwendung mit einem Computer empfehlen wir den **Computer USB**-Anschluss.

(!) Lesen Sie mehr zur Konfiguration der MIDI-Ports im Kapitel zum Global-Modus.

Der Steuerräder-Bereich

Die Octave Down/Up-Schalter

Obwohl der MIDI-Standard 128 Tasten vorschreibt, haben wir nur 61 eingebaut. Zum Ausgleich gibt es aber diese beiden Taster zur Oktavierung

der Keyboard-Tastatur. Drücken Sie **Octave Down** um eine Oktave tiefer zu spielen und **Octave Up** um eine Oktave höher anzuwählen. Die maximale Transponierung ist jeweils drei Oktaven nach unten bzw. nach oben.

(!) Drücken Sie beide **Octave**-Taster gleichzeitig, um einen *All Notes Off*-Befehl zu senden. Das beendet alle gespielten Noten im Falle eines sogenannten "MIDI-Hängers".

Der Mono-Taster

Schaltet den polyphonen Spielmodus in den Mono-Modus um und umgekehrt. Wenn der **Mono**-Taster aufleuchtet (oder je nach Hintergrundbeleuchtungsmodus des Tasters

blinkt; weitere Informationen hierzu im Kapitel zum Global-Modus -> Settings -> Colors), ist der monophone Modus aktiv. Mono bedeutet, dass nur die zuletzt eingehende Note spielt. Alle anderen Noten werden in einer internen Liste gespeichert, aber nicht gespielt. Sobald Sie die zuletzt angeschlagene Note loslassen, erklingt die vorherige, sobald Sie diese loslassen, die davor gespielte und so weiter. Spielen Wenn Sie legato (mit gehaltenen Noten) spielen, triggert nur die erste Note die Hüllkurven, bei denen der **SingleTrig**-Parameter aktiviert ist. Hüllkurven, bei denen **SingleTrig** deaktiviert ist, werden bei jeder Note erneut ausgelöst, selbst wenn legato gespielt wird. Sie können die SingleTrig-Einstellungen für alle Hüllkurven beliebig mischen und anpassen. Der **SingleTrig**-Modus eignet sich besonders für typische 1970er Solo-Sounds.

Der Latch-Taster

Wenn aktiv, werden alle gespielten Noten gehalten. Dies betrifft auch den Arpeggiator. Der **Latch**-Taster verhält sich ähnlich wie ein gedrücktes Sustain-Pedal. Sie können aber auch gehaltene Noten durch erneutes Auslösen freigeben. Drücken Sie **Latch** erneut, um die Funktion zu deaktivieren.

*√*waldorf

Der Chord-Taster

Chord ist eine Variante des **Latch**-Modus. Anstatt eine gespielte Taste zu halten, speichert ein aktiver Chord-Modus alle gespielten Akkord-Noten innerhalb einer kurzen Zeitspanne, so wie sie ausgelöst werden. Wenn Sie dann anschliessend einen anderen Akkord spielen, ersetzt dieser neue Akkord den vorherigen. Drücken Sie den **Chord**-Taster erneut, um den Chord-Modus zu beenden. Um zu visualisieren, dass der Chord-Modus eine Variante des Latch-Modus ist, wird bei jeder Aktivierung des **Chord**-Tasters auch der **Latch**-Taster aktiviert.

Der Arpeggiator (Arp)-Taster

Drücken Sie diesen Taster, um den Arpeggiator oder den Stepsequenzer zu aktivieren oder zu deaktivieren. Wenn Sie eine Note oder einen Akkord auf der Tastatur spielen oder über MIDI auslösen, wird diese rhythmisch aufgeteilt und wiederholt. Weitere Informationen zum Arpeggiator und zum Sequenzer finden Sie im Kapitel zum "Perform-Modus".

() Wir empfehlen, beim Einsatz des Arpeggiators anstelle des Latch-Tasters den Chord-Taster zu drükken. Im Latch-Modus werden alle gespielten Noten gehalten, bis Sie diese erneut auslösen.

Das Pitch Bend-Rad

Nutzen Sie diese Spielhilfe um die Tonhöhe der gespielten Noten zu ändern. Wenn Sie das Rad loslassen springt es automatisch in die neutrale Mittelstellung zurück.

Das Modulations-Rad

Hiermit kann der Klang der gespielten Noten beeinflusst werden. Im Gegen-

satz zu Pitchbend springt dieses Rad nicht automatisch in die Ausgangsposition zurück. Keine Panik, falls das Betätigen dieses Rads keine hörbare Wirkung erzeugt, in diesem Fall hat ein schlampiger Soundprogrammierer vergessen, dem angewählten Sound eine entsprechende Funktion zuzuweisen.

Das Pitch Bend-Rad und das Modulationsrad können mit der entsprechenden Funktion im Global-Modus kalibriert werden. Weitere Informationen finden Sie im entsprechenden Kapitel.

Grundsätzliche Bedienung

An- und Ausschalten

Um den Quantum an- oder auszuschalten:

♦ Anschalten:

٠

Betätigen Sie den

Netzschalter auf der Rückseite des Quantum. Der Startvorgang dauert einige Sekunden. Anschliessend ist der Quantum spielbereit.

- O Ausschalten:
 - Betätigen Sie den Netzschalter erneut, um den Quantum auszuschalten.

Master Volume

Master Volume regelt den Gesamtausgangspegel des Quantum. Lautstärkeänderungen betreffen sowohl den Main Output als auch den Kopfhörerausgang. Der Aux-Ausgang wird hiervon nicht beeinflusst.

Master Volume

Die Quantum Modus-Schalter

Der Quantum bietet zusätzlich zu den Bedienparametern aufrufbare Modusseiten für weitere und globale Einstellungen. Um eine gewünschte Modusseite aufzurufen, drükken Sie einfach den entsprechenden Modus-Taster oberoder unterhalb des Touchscreen-Displays. Folgende Modus-Seiten stehen zur Verfügung:

LFOS	OSC 1		OSC 3	FILTERS	ENVELOPES	MOD	EFFECTS
------	-------	--	-------	---------	-----------	-----	---------

- LFOs (6x Low Frequency Oscillators)-Modus-Seite
- OSC 1, 2 und 3 (Oscillators)-Modus-Seite
- **FILTERS** (Dual Analog Filter, Digital Former und Routing)-Modus-Seite
- **ENVELOPES** (Amp-, Filter 1 & 2-, Free 1, 2, 3 Hüllkurven)-Modus-Seite
- **MOD** (Modulation Matrix & Komplex Modulator)-Modus-Seite
- EFFECTS (Effekte 1 bis 5)-Modus-Seite
- Load-Modus-Seite

Mod

- Save-Modus-Seite
- Mod (Modulationszuweisungen)

Quantum Bedienhandbuch

 Perform-Modus-Seite (Favoriten, Arpeggiator, Sequenzer und Modulation-Pad)

• Layer-Modus-Seite (Levels & Routing sowie Voiceszuweisungen)

• **Global**-Modus-Seite (Scope, Pitch, Audio, MIDI, Settings, System)

- (Drücken Sie mehrmals einen der Taster über dem Display, um schnell durch die entsprechenden Funktionsregisterkarten zu schalten.
 -) Alle Modi werden in weiteren Kapiteln in diesem Handbuch im Detail beschrieben.

Das Touchscreen Display

Das Touchscreen-Display gibt Ihnen einen Überblick über den aktuellen Modus, über Parameteränderungen und liefert zusätzliche Informationen. Um eine gewünschte Funktion auszuwählen, können Sie ein Aufklapp-Menü öffnen oder eine Grafik bearbeiten (z. B. Hüllkurven). Die sechs silbernen Endlos-Drehregler links und rechts vom Display steuern den entsprechenden Parameter, der im Display neben dem jeweiligen Regler angezeigt wird. Die Display-Darstellung hängt vom ausgewählten Modus ab, der untere Teil zeigt jedoch immer dieselbe Übersicht:

1) Der Monitor-Bereich links unten im Display bietet ein VU-Meter, um den Pegel des linken/rechten Main Out-Kanals und der acht gespielten Stimmen anzuzeigen. Hier können Sie auch die Stimmenauslastung für jeden Laver (mit eigenen Farbcode) ablesen. Tippen Sie auf den Monitor-Bereich, um ein Aufklapp-Menü zum Ändern der Darstellung auszuwählen. Scope liefert eine Echtzeit-Wellenformanzeige des aktuellen Stereosignals. Die Scope-Anzeige kann zusätzlich im Global-Menü konfiguriert werden. Analyzer (lin) bietet eine Echtzeit-Analyseranzeige zur Darstellung des linearen Frequenzgehalts des Signals, während Analyzer (log) eine logarithmische Darstellung (wie bei den meisten Audio-Analysern üblich) zeigt. Der *MIDI-Monitor* zeigt alle vom Quantum erzeugten (Internal) sowie eingehende MIDI-Meldungen (via MIDI In und den USB-Anschlüssen) an.

2) Der Bereich **Sound Name** zeigt das aktuell geladene Sound-Programm. Aktive Soundprogrammfilter (können im **Load**-Browser eingestellt werden) werden ebenfalls angezeigt. Tippen Sie auf den Soundnamen, um den **Load**-Modus aufzurufen. Weitere Informationen hierzu finden Sie im nachfolgenden Abschnitt. Links neben dem Soundnamen wird die Sound-Programmnummer angezeigt. Tippen Sie auf diese Programmnummer, um ein Programm direkt durch Eingabe seiner Nummer auszuwählen.

3) Die **Layer**-Schaltflächen zeigen an, welcher Layer aktiv ist. Tippen Sie auf die entsprechende Schaltfläche **Layer 1** oder **Layer 2**, um zwischen den Layern zu wechseln. Unter jedem Layer-Taster wird angezeigt, ob das Programm bestimmte Modi wie Arp, Sequencer, Unisono, Mono und dergleichen verwendet. Bei aktivem Split-Modus wird über den Layer-Schaltflächen ein entsprechendes Symbol für einen Split angezeigt. Bei einem Layer-Sound, der von beiden Layern gleichzeitig abgespielt wird, wird über den Layer-Schaltflächen ein entsprechendes Symbol angezeigt. Erfahren Sie mehr zu den Layern im Kapitel "Die Layer Menüseite".

Sound-Programme laden

Der Quantum bietet unterschiedliche Möglichkeiten, Sound-Programme zu laden:

· Verwenden Sie im Load-Modus (der Load Load-Taster leuchtet) das Auswahlrad, um das gewünschte Soundprogramm in der Soundliste auszuwählen. Drehen im Uhrzeigersinn erhöht die Programmnummer, Drehen gegen den Uhrzeigersinn erniedrigt diese. Um das gewünschte Soundprogramm zu laden, drücken Sie einmal auf das Auswahlrad. Sie können auch auf die Schaltfläche 1234 tippen, um eine gewünschte Soundnummer direkt einzugeben. Tippen Sie anschließend auf Return, um dieses Soundprogramm zu laden. Durch Tippen auf einen Sound in der Liste wird der Sound ausgewählt und der Detailbereich zeigt Ihnen zusätzliche Informationen zu diesem Sound an. Eine Auswahl wird durch einen türkisen Rahmen dargestellt. Wenn Sie den angewählten Sound ein zweites Mal antippen, wird dieser geladen. Ein geladener Sound wird in der Liste durch einen weißen Hintergrund dargestellt.

- (!) Sie können die **Load**-Modus-Seite auch aufrufen, indem Sie auf den Namen des Soundprogramms tippen.
- () Sie können die Sound-Nummer auch eingeben, indem Sie auf die Klangprogrammnummer tippen.
- (!) Sie können Sounds nach Attributen, Bänken und Autoren filtern. Nutzen Sie hierfür die drei silbernen Endlos-Regler links neben dem Display. In den Einstellungen *All* haben Sie jeweils Zugriff auf alle vorhandenen Sounds.
 - Drücken Sie die Nextoder Prev-Taster, um das nächste oder vorhe-

rige Sound-Programm sofort zu laden. Diese Funktion ist in fast jedem Modus und auf jeder Display-Seite verfügbar.

Wenn es sich beim aktuellen Sound um einen **Split**- oder **Layer**-Sound handelt, wird eine Option angezeigt, mit der das Patch nur in den aktuelle Layer geladen werden kann und der andere Layer somit unverändert bleibt. Diese Option wird nur angezeigt, wenn Sie den **Load**-Taster betätigen, damit das Laden komplexer Sound-Patches via Favorites oder über die **Next / Prev**-Taster keine Unterbrechnung erzeugt.

Im rechten Bereich der Load Patch-Seite finden Sie weitere Informationen zum ausgewählten Sound. Neben dem Soundnamen sehen Sie hier die entsprechende **Bank**, den **Autor** und auch **Attribute**. Diese Einstellungen können während des Speicherns eines Soundprogramms vorgenommen werden (siehe Kapitel "Programme speichern").

Durch Antippen des **Init**-Tasters können Sie den aktuell geladenen Sound initialisieren. Bei dieser Aktion wird kein Sound-Programm überschrieben. Wenn Sie sich im **Layer**-Modus befinden, öffnet sich ein Aufklapp-Menü, in dem Sie auswählen können, ob der aktuell ausgewählte Layer (**Current**) oder das komplette Sound-Programm (**Reset**) initialisiert werden soll. Bei Auswahl von **Reset** erzeugt das initialisierte Sound-Programm ein Single-Layer-Programm. Durch Tippen auf **Delete** können Sie den aktuell ausgewählten Sound löschen. Dieses Verfahren muss vorher bestätigt werden, da es irreversibel ist.

Tippen Sie auf die Schaltfläche **Favorites**, um eine neue Seite zum Verwalten Ihrer favorisierten Sounds zu öffnen. Sie können einen beliebigen Sound aus der linken Liste auswählen und ihn der Favoritenliste auf der rechten Seite hinzufügen. Sie können Sounds in leere Slots legen (**Add**), Soundprogramme ersetzen (**Replace**) oder entfernen (**Remove**) oder ihre Position ändern (**Up** & **Down**). Tippen Sie auf **Back**, um die Favoritenseite zu verlassen.

Tippen Sie auf das **Actions**-Aufklappmenü, um die folgenden Aktionen auszuführen:

- **Import** ermöglicht das Importieren von Soundprogrammen von einer angeschlossenen SD-Karte.
- **Export** ermöglicht das Exportieren des aktuellen Soundprogramms auf eine angeschlossene SD-Karte.
- Mit **Rebuild Cache** können Sie bei Problemen den internen Datencache neu erstellen lassen.

Die Load-Modus Display-Seite

Editieren von Parametern

Um ein Sound-Programm zu verändern, müssen Sie auf dessen Parameter zugreifen. Abhängig vom Parameter-Typ gibt es dafür unterschiedliche Möglichkeiten:

- Die Bedienelemente des Quantum bieten direkten Zugriff auf die wichtigsten Klangparameter. Das Bedienfeld ist in mehrere Bereiche unterteilt, die jeweils Taster und Regler enthalten, die diesem Abschnitt zugeordnet sind. Sie erlauben sofortigen Zugriff auf den aktuellen Sound und werden als **Panel-Parameter** bezeichnet. Bei der Bearbeitung eines Panel-Parameters wird dieser im unteren Teil des Touchscreen-Displays angezeigt (Parametername und zugehöriger Wert).
- (!) Alle Panel-Parameter-Drehregler können MIDI-Controller-Daten über MIDI USB und MIDI Out senden. Lesen Sie mehr dazu im Kapitel "Das Global-Menü".
- Die meisten Bereiche bieten zusätzliche Klangparameter, die über das Touchscreen-Display editiert werden können. Um einen solchen Parameter zu bearbeiten, drücken Sie den entsprechenden Modus-Taster über oder unter dem Touchscreen (z.B. LFOS) und nutzen Sie die sechs Regler links und rechts des Touchscreen-Displays. Die Touchscreen-Anzeigeseite enthält zusätz-

liche Parameter, auf die nicht direkt über die Steuerelemente im Bedienfeld zugegriffen werden kann. Diese Parameter werden als **Display-Menü-Parameter** bezeichnet. Für jeden Parameter wird der ursprüngliche Wert eines geladenen Patches durch einen vertikalen Balken im unteren unteren Bereich und in den Drehregler-Werteanzeigen angezeigt.

- Einige Funktionen können direkt über das Touchscreen-Display bedient werden. Tippen Sie mit dem Finger auf den entsprechenden Parameter/ Option/Schaltfläche, um Aufklapp-Menüs oder Schieberegler zur Werteänderung zu öffnen oder um Grafiken (z. B. Hüllkurven) zu bearbeiten.
- Auf vielen Anzeigeseiten können Sie mit dem Auswahlregler die wichtigsten Parameter steuern - beispielsweise Cutoff 1 auf der Dual Analog Filter-Seite.
- (!) Einige Parameter sind sowohl über das Bedienfeld als auch über den Touchscreen editierbar, z. B. die Hüllkurven-Phasen.

Alle Drehregler sind sogenannte Endlosregler oder Potentiometer. Drehen eines Reglers im Uhrzeigersinn erhöht den zugehörigen Parameterwert, Drehen dagegen verringert ihn. Bei bipolaren Parametern, also Parametern mit positiven und negativen Werten, besitzt der Quantum eine Mittenrastung. Wird beim Durchfahren des Wertebereichs der Wert θ erreicht, stoppt der Durchlauf kurz, um eine neutrale Einstellung zu erleichtern.

- () Für jeden Parameter wird der ursprüngliche Wert eines geladenen Patches durch einen vertikalen Balken im unteren unteren Bereich und in den Drehregler-Werteanzeigen angezeigt.
- ① Tipp: Drücken Sie mehrmals einen der Taster über dem Display, um schnell durch die entsprechenden Funktionsregisterkarten zu schalten.
- U Weitere Informationen zu Grundeinstellungen für die Regler finden Sie im Kapitel zum "Global-Modus".
- Möchten Sie mit einem initialisierten Sound beginnen? Durch Tippen auf die Init-Schaltfläche können Sie den aktuell geladenen Sound initialisieren. Bei dieser Aktion wird kein Sound-Programm überschrieben. Wenn Sie sich im Layer-Modus befinden, öffnet sich ein Aufklapp-Menü, in dem Sie auswählen können, ob der aktuell ausgewählte Layer (Current) oder das komplette Sound-Programm (Reset) initialisiert werden soll. Bei Auswahl von Reset erzeugt das initialisierte Sound-Programm ein Single-Layer-Programm.

Programme speichern

Nachdem Sie die gewünschten Veränderungen an einem Sound-Programm vorgenommen

haben, sollten Sie es zur weiteren Verwendung abspeichern. Alle Programmplätze innerhalb des Quantum stehen dabei zur Verfügung.

	Name:	The Quantum Manua	al		
	Bank:	tsching			
	Author:	Holger Steinbrink	k +		
	Attribute 1:	Atmo			
	Attribute 2:	Granular			
	Attribute 3:	Pad			
	Attribute 4:				
		Save	Cancel		
1 2 3 4 5 6 7		0000 The (Quantum Mai	nu Lay	e <mark>r 1</mark> Layer 2

So speichern Sie ein Sound-Programm:

1. Drücken Sie den **Save**-Taster, um die Save Preset-Seite aufzurufen. Der **Save**-Taster leuchtet dabei rot.

- Ändern Sie falls gewünscht den Namen. Tippen Sie auf den Soundnamen, um ein virtuelles Eingabe-Keyboard zu öffnen. Der Name kann bis zu 40 Zeichen lang sein. Tippen Sie zur Bestätigung auf Return. Tippen Sie auf Cancel, um den Benennungs-Vorgang abzubrechen,
- 3. Tippen Sie auf den **Bank**-Namen, um ein Aufklapp-Menü zur Auswahl einer gewünschten Soundbank zu öffnen. Sie können auch eine neue Bank hinzufügen, indem Sie auf das + neben dem Banknamen tippen.
- 4. Tippen Sie auf den **Autor**-Namen, um im Aufklapp-Menü einen gewünschten Autor auszuwählen. Sie können auch einen neuen Autor hinzufügen, indem Sie auf das + neben dem Autornamen tippen.
- 5. Sie können bis zu vier Attribute für Ihren Sound auswählen. Tippen Sie im Touchscreen auf das entsprechende Attribut 1 bis 4, um eine Menüauswahlliste zu öffnen. Wählen Sie das gewünschte Attribut aus. Sie können auch ein neues Attribut hinzufügen, indem Sie auf das + neben dem entsprechenden Attributnamen tippen. Es wird empfohlen, ein für Ihren Sound geeignetes Attribut auszuwählen. Dies hilft Ihnen später, Ihren Sound einfacher zu finden.

- 6. Wählen Sie mit den Prev/Next-Tastern oder dem Auswahlregler die gewünschte Klangprogrammnummer, unter der das Soundprogramm gespeichert werden soll. Alternativ können Sie auch auf das Zahlenfeld am unteren Rand des Displays tippen, um die Programmnummer manuell einzugeben.
- 7. Tippen Sie abschließend auf dem Touchscreen auf **Save**, um das Klangprogramm am ausgewählten Ort zu speichern.
- 8. Durch Antippen von **Cancel** im Touchscreen oder Betätigen irgendeines Tasters auf der Bedienoberfläche kann der Speichervorgang jederzeit abgebrochen werden.

Immer wenn Sie ein Programm speichern, wird der ausgewählte Programmplatz überschrieben. Dabei wird das zuvor an diesem Platz befindliche Programm unwiderruflich gelöscht. Sie sollten deshalb regelmäßig Backups Ihrer Sounds machen, indem Sie die **Export**-Funktion im **Action**-Menü der **Load**-Seite nutzen. () Verwenden Sie die Speicherfunktion auch zum Kopieren von Programmen. Es ist nicht erforderlich, ein Programm vor dem Speichern auch zu bearbeiten.

Die Sound-Parameter

Funktionsübersicht

Der Quantum besitzt eine Vielzahl klangformender Bausteine. Auf den folgenden Seiten erhalten Sie einen Überblick aller relevanten der Bereiche.

Der Quantum ist im Wesentlichen aus zwei verschiedenen Arten von Bausteinen aufgebaut:

Klangerzeugung und -bearbeitung: Oszillator-Modelle, Mischer, Filter, Digital Former, Verstärker, Effekte. Diese Module sind für den Audio-Signalfluss verantwortlich. Die eigentliche Tonerzeugung findet innerhalb der Oszillatoren statt. Diese erzeugen entweder klassische Wellenformen. Wavetables. für die Waldorf seit Jahrzehnten bekannt ist oder ermöglichen Granular-Sampleplayback oder Resonator-Funktionen. Im nachfolgenden Mischer wird das Ausgangssignal der Oszillatoren zusammengeführt. Die Analog-Filter formen anschließend den Klang, indem sie verschiedene Spektralanteile dämpfen oder anheben. Digital Former bietet zusätzlich unterschiedliche Filter und Effekte zur Klanggestaltung. Es folgt der Verstärker, der die Gesamtlautstärke bestimmt, sowie die fünf nachgeschalteten Effekteinheiten, die dem Signal beispielsweise Chorus, Flanger oder Delay hinzufügen.

Möglicher Audio-Signalfluss innerhalb des Quantum

 Modulatoren: LFOs, Hüllkurven, Komplex Modulator, Modulations-Matrix. Aufgabe dieser Modulatoren ist es, durch Beeinflussung (Modulation) der Klangerzeugungsbausteine dem Klang eine Dynamik zu verleihen. Die Niederfrequenz-Oszillatoren (LFOs) dienen dabei der Erzeugung periodischer Wellenformen, die Hüllkurven zur Erzeugung von einmaligen Zeitverläufen. Über eine Modulationsmatrix nehmen diese Generatoren Einfluss auf Parameter der Klangerzeugung.

Der Oszillator-Bereich

The Oscillator Section for Oscillator 1

Der Quantum biete drei Oszillatoren mit unterschiedlichen Klangerzeugungsmöglichkeiten: Wavetable-Oszillator, Waveform-Oszillator, Particle-Generator und Resonator.

Auf die sinnvollsten Bedienelemente der Oszillatoren können sie direkt mit den Panel-Bedienelementen zugreifen. Weitere Parameter sind über die entsprechenden Display-Menüseiten verfügbar.

Wählen Sie das gewünschte Oszillatormodell aus, indem Sie den entsprechenden Taster drücken. Der Taster des gewählten Modells leuchtet dann. Jedes Modell verwendet eine eigene Farbegebung – genauso wie bei den Oszillator-Parameterreglern. Wenn beispielsweise der **Particle**- Generator für Oszillator 1 ausgewählt ist, leuchtet der gesamte Bereich blau.

() Wenn Sie einen aktiven Oszillator-Taster drücken, wird der entsprechende Oszillator vollständig ausgeschaltet. Dadurch erhalten Sie einen bessere Überblick beim Bearbeiten von Sounds, da Sie diese Funktion als Stummschaltung nutzen können.

Je nach ausgewähltem Modell besitzen die Oszillator-Parameterregler unterschiedliche Funktionen. Diese werden in den nachfolgenden Kapiteln ausführlich erklärt.

Der Wavetable-Oszillator

Drücken Sie den **Wavetable**-Taster, um den Wavetable-Oszillator für den gewünschten Oszillator 1, 2 oder 3 zu

aktivieren. Der gesamte Oszillator-Bereich leuchtet dann türkis.

- () Eine Erklärung zur Wavetable-Synthese finden Sie im Anhang im Kapitel "Über die Wavetable-Synthese".
- (!) Weitere Bedienparameter finden Sie auf der entsprechenden Oszillator-Displayseite. Lesen Sie mehr dazu auf den nachfolgenden Seiten.

Wavetable Oscillator Panel Parameters

Semitones

Bestimmt die Tonhöhe des Wavetabel-Oszillators in Halbtonschritten. Die Standardeinstellung dieses Parameters ist θ , in einigen Fällen sind jedoch auch andere Werte erwünscht.

Fine Pitch

Stellt die Feinstimmung des Oszillators in 100steln eines Halbtons (Cents) ein. Das Verstimmen der Oszillatoren gegeneinander bewirkt eine hörbare Schwebung, die einem Chorus ähnelt. Verwenden Sie eine positive Verstimmung für einen Oszillator und den gleichen negativen Wert für einen anderen.

Spectrum

Der spektrale Verlauf eines Sounds kann unabhängig von der Tonhöhe eingestellt werden. Darüber hinaus kann der Wavetable-Oszillator einen periodischen Klang bis hin zu verrauschten Klangbestandteilen erzeugen. **Spectrum** transponiert das Spektrum – genauer gesagt die spektrale Hüllkurve. Negative Werte verschieben es nach unten, positive Werte nach oben. In der Einstellung 0 wird nichts verschoben, dies ist der Standard-Wert für die klassische Wavetable-Wiedergabe.

Noisy

Hiermit kann der Wave-Oszillator mehr oder weniger rauschhaft eingestellt werden – selbstverständlich ohne Änderung des Spektrums.

Position

Dieser Regler bestimmt den Startpunkt der angewählten Wavetable, wobei *0* die erste Welle und die Maximalposition die letzte Welle einer Wavetable anwählt. Die aktuelle Position wird in der zentralen Anzeige durch eine rote Linie markiert.

FX

Bestimmt den Betrag der Sättigung/Verstärkung, der dem Wavetable-Signal hinzugefügt wird. Bei einer Einstellung von 0 wird keine Sättigung/Verstärkung hinzugefügt - das Signal bleibt wird also "sauber" wiedergegeben. Niedrigere Werte fügen dem Signal einige Obertöne hinzu, was zu einem warmen Klangcharakter führt. Durch Erhöhen des Werts wird die Verzerrung/Verstärkung immer stärker. Das Ergebnis hängt von dem ausgewählten **FX Type** (*Off, Drive, Gain*) ab, der auf der **Timbre**-Registerkarte zu finden ist. Bitte lesen Sie hierzu auch den entsprechenden Abschnitt weiter unten.

Travel

Erlaubt das zyklische Durchfahren einer Wavetable. Bei positiven Werten wird diese vorwärts durchfahren, bei negativen rückwärts. Niedrige Werte verlangsamen die Durchfahrt, höhere verschnellern diese. Zyklisch bedeutet, dass wieder von vorn gestartet wird, sobald das Ende einer Wavetable erreicht ist. Falls Sie keine zyklische Modulation wünschen, modulieren Sie **Position** mit einer Hüllkurve, einem LFO oder einer anderen Modulationsquelle Ihrer Wahl. Sie können auch verschiedene **Travel Modes** einstellen. Bitte lesen Sie hierzu Sie den entsprechenden Abschnitt weiter unten.

Nutzen Sie **Travel** mit einer einer Einstellung von *3* Seconds, um sich einen Eindruck über die Klangvielfalt der jeweilgen Wavetable zu machen.

Die Wavetable-Oszillator Display-Seiten

Um auf die Wavetable Oszillator-Displayseiten zugreifen zu können, drücken Sie den entsprechende OSC-Taster 1, 2 oder 3 oberhalb des Displays.

Hier können Sie zwischen zwei Modi wechseln: **Control** und **Timbre**. Tippen Sie auf die entsprechende Registerkarte, um diese auszuwählen. Die Anzeige wechselt in diesen Modus. Eine dritte Registerkarte zeigt das aktuelle Oszillatormodell an. Tippen Sie darauf, um ein anderes Modell auszuwählen oder um es auszuschalten (*Off*).

	Control	Tin		Resonator		
Semitones						Osc1 Vol
-12 semi						0 dB
Mod						Normal Mod
Fine Pitch						Osc1 Pan
+0.0 cents						Center
Normal						Normal Mod
Keytrack						Osc1 Dest
+100.0 %		0.17				Main
Normal	PB Range Osc 1	PitchVar				
		0 The Qu	antum	Manual	Lay	rer 1 Layer 2

Control-Modus

Hier finden Sie Parameter für die Stimmung und Grundeinstellungen.

Semitones

Gleiche Funktionalität wie der entsprechende Panel-Parameter.

Tippen Sie auf **Semitones**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt Semitones auf den Standardwert von *0*.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das **Mod**-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt. Im Gegensatz zur Halbtonsteuerung in Stufen ändert die Tonhöhenmodulation die Tonhöhe kontinuierlich entsprechend der Form der Modulationsquelle.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

*₹*waldorf

Fine Pitch

Gleiche Funktionalität wie der entsprechende Panel-Parameter.

Tippen Sie auf **Fine Pitch**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Normal**: Die Fine Pitch-Werteänderung beträgt 2 Cents.
- Fine: Die Fine Pitch-Werteänderung beträgt 0.2 Cents.
- **Super Fine**: Die Fine Pitch-Werteänderung beträgt 0.02 Cents.
- **Set Default**: Stellt Fine Pitch auf den Standardwert von *0*.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Pitch Keytrack

Bestimmt, wie stark die Tonhöhe des angewählten Oszillators von der MIDI-Notennummer abhängt. Die Referenznote für diesen Parameter ist C3, Notennummer 60. Bei positiven Werten steigt die Oszillator-Tonhöhe, wenn Noten oberhalb der Referenznote gespielt werden, bei negativen Werten fällt Sie entsprechend und umgekehrt. Die Einstellung +100% entspricht der 1:1-Skalierung, d.h. wenn Sie auf dem Keyboard eine Oktave spielen, ändert sich die Tonhöhe um den gleichen Betrag. Andere Werte als +100% sind vor allem bei der Benutzung von Ringmodulation sinnvoll.

Tippen Sie auf **Keytrack**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Keytrack-Werteänderung beträgt 4%.
- Fine: Die Keytrack-Werteänderung beträgt 0.4%.
- **Super Fine**: Die Keytrack-Werteänderung beträgt 0.04 %.
- Set Default: Stellt Keytrack auf den Standardwert von 100%.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Osc 1/2/3 Vol

Gleiche Funktionalität wie der entsprechende Panel-Parameter.

Tippen Sie auf **Osc 1/2/3 Vol**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Normal**: Die Osc Vol-Werteänderung lässt sich regulär einstellen.
- Fine: Die Osc Volk-Werteänderung lässt sich feiner einstellen.
- **Super Fine**: Die präziseste Werteänderung für Osc Vol..
- **Set Default**: Stellt Osc 1 Vol auf den Standardwert *0 dB* sowie Osc 2/3 Vol auf Ihre Basiseinstellungen von *-inf*.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das **Mod**-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Osc 1/2/3 Pan

Gleiche Funktionalität wie der entsprechende Panel-Parameter.

Tippen Sie auf **Osc 1/2/3 Pan**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Osc Pan-Werteänderung beträgt 2 %.
- Fine: Die Osc Pan-Werteänderung beträgt 0.2 %.
- **Super Fine**: Die Osc Pan-Werteänderung beträgt 0.02 %.
- Set Default: Stellt Osc 1/2/3 Pan auf die Standardeinstellung *Center*.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Osc 1/2/3 Dest

Hier können Sie das Routing des entsprechenden Wavetable-Oszillatorsignals bestimmen. Die folgenden Routing-Optionen sind verfügbar:

- Main: Leitet das Signal vollständig durch den Signalpfad (Dual Analog Filter, Digital Former, VCA), wie mit dem Routing-Parameter auf der Filter-Seite festgelegt.
- VCA: Leitet das Signal direkt an den VCA, ohne den Filter-Bereich zu durchlaufen.
- **DF Fil**-Einstellungen: Bietet alternative Einstellungen für das Signalverhältnis zwischen dem Digital Former (**DF**) und dem Dual Analog-Filter (**Fil**). Wenn Sie das Signal beispielsweise zu 30% durch den Digital Former und zu 70% durch das Analogfilter senden möchten, stellen Sie hier *DF 30 Fil 70* ein. Das Routing hängt auch von der **Routing**-Parametereinstellung auf der Filter-Seite ab.

Tippen Sie auf **Osc 1/2/3 Dest**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Set Default: Stellt Osc 1/2/3 Dest auf die Standardeinstellung *Main*.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.

• **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

RingMod (only available for Osc 2 and 3)

Regelt die Lautstärke der Ringmodulation zwischen Osc 1 und 2 (für Osc 2) oder 1 und 3 (für Osc 3).

(1) Was ist Ringmodulation? Aus technischer Sicht ist es die Multiplikation zweier Oszillator-Signale. Das Ergebnis ist eine Wellenforn, welche die Summen- und Differenzanteile der zugrundeliegenden Frequenzkomponenten enthält. Da die Ringmodulation disharmonische Anteile erzeugt, eignet sie sich zur Erzeugung metallisch verzerrter Klänge. Beachten Sie, dass sich in einer komplexen Wellenform alle harmonischen Einzelkomponenten wie interagierende Sinuswellen verhalten. Das Ergebnis ist in diesem Fall ein Klang, der weite Spektralbereiche überstreicht.

Tippen Sie auf **RingMod**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die RingMod-Werteänderung beträgt 0.4 dB.
- Fine: Die RingMod-Werteänderung beträgt 0.04 dB.

- **Super Fine**: Die RingMod-Werteänderung beträgt 0.004 dB.
- **Set Default**: Stellt RingMod auf die Standardeinstellung *0 dB*.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

PB Range Osc 1, 2 or 3

Bestimmt die Intensität der Tonhöhenänderung durch Pitchbend-Meldungen in Halbtonschritten von -24 bis +24 des ausgewählten Oszillators.

Tippen Sie auf **PB Range**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt PB Range auf die Standardeinstellung +12.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.

• **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

PitchVar

Um die Tonhöhenvariationen analoger Schaltungen aufgrund von Komponententoleranzen, fehlender Kalibrierung und Temperatureffekten zu simulieren, weist Quantum jedem Oszillator und jeder gespielten Stimme einen zufälligen Koeffizienten zu. Der Betrag, um den diese Koeffizienten die Tonhöhe jedes Oszillators beeinflussen, wird vom **PitchVar**-Parameter gesteuert. Je höher der Wert, desto stärker die Variation. Wenn Sie diesen Parameter auf *0* setzen, wird diese Variation deaktiviert. Während jeder Oszillator bei jeder Stimme einen individuellen Koeffizienten besitzt, ist der Parameter **PitchVar** für alle Oszillatoren aller gespielten Stimmen global.

Tippen Sie auf **PitchVar**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt PitchVar auf die Standardeinstellung 0.17.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.

• **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Timbre Modus

Hier finden Sie spezifische Parameter für die Wavetable-Generatoren.

- (!) Die Wavetable-**Position** kann in der grafischen Wavetable-Darstellung durch vertikales Ziehen geändert werden.
- (!) Unterhalb der grafischen Wavetable-Darstellung werden Informationen zu **Travel** und der **Wavetable** angezeigt.

Wavetable

Hier können Sie die gewünschte Werks- oder User-Wavetable auswählen.

Tippen Sie auf **Wavetable**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Set Default: Stellt Wavetable auf die Standardeinstellung *Resonant.*
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.

- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.
- Das Umschalten zwischen den Wavetables bei gehaltenen Noten findet ohne hörbare Unterbrechungen statt. Dieses Verhaltne ist ideal geeignet, um die Wavetableauswahl als Modulationsziel zu verwenden. Das eröffnet eine neue Dimension der Wavetable-Synthese: Sie modulieren nicht nur die Position innerhalb einer Wavetable, um das Timbre zu ändern, sondern Sie können gleichzeitig zwischen allen Preset-Wavetables modulieren. Diese Modulation kann polyphon sein, d.h. wenn Ihre Modulationsquelle *Rand Trig* oder *Voice Index* ist, verwendet jede gespielte Stimme eine andere Wavetable. Dies gilt natürlich auch für LFO- oder hüllkurvenbasierte Modulationen.

Position

Gleiche Funktionalität wie der entsprechende Panel-Parameter.

Tippen Sie auf **Position**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Normal**: Die Wavetable-Positionsänderung beträgt 0.63.
- Fine: Die Wavetable-Positionsänderung beträgt 0.06.
- **Super Fine**: Die Wavetable-Positionsänderung beträgt 0.01.
- **Set Default**: Stellt Position auf die Standardeinstellung 0.00.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Phase

Legt die Startphase der Wavetable in Grad fest. Dadurch können Sie z.B. Klicks zum Notenbeginn erzeugen, wenn diese gewünscht werden. Wenn Sie **Phase** auf den maximalen Wert einstellen, wird eine "Free Running"-Funktion
ausgelöst, wie Sie es sicherlich von einem Hardware-Oszillator kennen.

Tippen Sie auf **Phase**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Phase-Wertänderung beträgt 5 Degree.
- Fine: Die Phase-Wertänderung beträgt 0.5 Degree.
- **Super Fine**: Die Phase-Wertänderung beträgt 0.1 Degree.
- Set Default: Stellt Phase auf die Standardeinstellung 0.0 Degree.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Spectrum

Gleiche Funktionalität wie der entsprechende Panel-Parameter.

Tippen Sie auf **Spectrum**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Spectrum-Wertänderung beträgt 2 %.
- **Fine**: Die Spectrum-Wertänderung beträgt 0.2 %.
- **Super Fine**: Die Spectrum-Wertänderung beträgt 0.02 %.
- **Set Default**: Stellt Spectrum auf die Standardeinstellung + 0.0 %.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Brilliance

Eine Änderung dieses Parameters ist nur dann wahrnehmbar, wenn das **Spectrum** relativ zur Tonhöhe nach oben transponiert wird. Mit zunehmender Brillianz werden die spektralen Peaks schmaler. Dies kann im Extremfall dazu führen, dass die wahrgenommene Tonhöhe die des Spektrums, statt der des Oszillators ist. Teilweise sind

die Auswirkungen dieses Parameters nur sehr subtil wahrnehmbar.

Tippen Sie auf **Brilliance**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Brilliance-Wertänderung beträgt 1 %.
- **Fine**: Die Brilliance-Wertänderung beträgt 0.1 %.
- **Super Fine**: Die Brilliance-Wertänderung beträgt 0.01 %.
- Set Default: Stellt Brilliance auf die Standardeinstellung 0.0 %.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Keytrack

Die Standard-Einstellung beträgt 100%, damit wandert das Spektrum mit der Tonhöhe wie in der konventionellen Wavetable-Synthese. Bei einer Einstellung von 0% hingegen beeinflusst die Tonhöhe das Spektrum nicht. Das ist z.B. gut für Sprache und Gesang mit Formanten, die von der Tonhöhe weitestgehend nicht beeinflusst werden. Aus diesem Grunde haben wir auch einen Sprachsynthesizer für Wavetables eingebaut (siehe auch "Die Tools-Schaltfläche"). **Keytrack** kann natürlich auch Zwischenwerte einnehmen, dann wird das Spektrum entsprechend mit der Tonhöhe transponiert.

Tippen Sie auf **Keytrack**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Keytrack-Wertänderung beträgt 1 %.
- **Fine**: Die Keytrack-Wertänderung beträgt 0.1 %.
- **Super Fine**: Die Keytrack-Wertänderung beträgt ut 0.01 %.
- Set Default: Stellt Keytrack auf die Standardeinstellung 100.0 %.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.

• **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Travel Mode

Es gibt verschiedene Modi für das Wavetable-Cycle-Verhalten.

Tippen Sie auf die **Travel Mode**-Einstellung, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Cycle**: Eine Wavetable beginnt automatisch wieder von vorne, wenn das Ende erreicht wird. Jede gespielte Note löst ihren eigenen Trave-Zyklus aus.
- **Global Cyc.**: Eine Wavetable beginnt automatisch wieder von vorne, wenn das Ende erreicht wird. Jede gespielte Note nutzt hierbei den gleichen Travel-Zyklus.
- **Sync**: Die **Travel**-Geschwindigkeit wird über das interne Tempo des Quantum (Einstellbar mit dem **Bpm**-Parameter im Arpeggiator bzw. Sequenzer) bzw. ein eingehendes MIDI Clock-Signal gesteuert. In diesem Fall können Sie **Travel** in musikalischen Werten einstellen. Der größmögliche Wert ist *1024*, wobei ein Durchlauf dann 1024 Schläge (Beats) benötigt

- **One Shot**: Eine Wavetable stoppt, wenn ihre letzte Wave erreicht ist. Die letzte Wavetable-Position wird abgespielt und gehalten. Jede gespielte Note löst ihren eigenen Trave-Zyklus aus.
- **Ping Pong**: Eine Wavetable startet automatisch die Rückwärtswiedergabe, wenn ihr Ende erreicht ist und umgekehrt. Jede gespielte Note löst ihren eigenen Ping-Pong-Zyklus aus.
- **Global P. P.**: Eine Wavetable startet automatisch die Rückwärtswiedergabe, wenn ihr Ende erreicht ist und umgekehrt. Jede gespielte Note nutzt hierbei den gleichen Travel-Zyklus.

Tippen Sie auf **Travel Mode**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Set Default: Stellt den Travel Mode auf die Standardeinstellung *Ping Pong.*
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Mode

Stellt die Synthesequalität ein. Die Einstellung Normal bietet einen Algorithmus, der höchstmögliche Qualität erzeugt, wobei digitale Artefakte wie Aliasing und dergleichen vermieden werden. Viele Anwender mögen jedoch die digitalen Artefakte der Legacy-Wavetable-Synthese, deshalb stehen auch andere Modi zur Verfügung: *Harsh* produziert zusätzliche nichtharmonische Komponenten in den unteren Tonhöhen, die zu volleren bis soagr aggressiven Klangfarben führen. *Dirty* fügt digitales Aliasing in den höheren Tonhöhen hinzu, an die Sie sich eventuell aus Zeiten erinnern, in denen die Verarbeitungsleistung eingeschränkt war und einfachere Implementierungen verwendet wurden.

Tippen Sie auf **Mode**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt den Mode auf die Standardeinstellung *Normal.*
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Limit

Bestimmt die Interpolationsqualität der Wavetable bei Verwendung des Parameters **Travel**.

- Wrap: Verwendet eine glatte Interpolation, wenn Travel das Ende der Wavetable erreicht und zur Startwaveposition zurückspringt. Diese Einstellung ist nützlich, wenn der Travel Mode auf *Cycle* eingestellt ist.
- Limit: Verwendet keine Interpolation wie bei älteren Waldorf-Wavetable-Synthesizern (z. B. Microwave), wenn Travel das Ende der Wavetable erreicht und zur Startwaveposition springt.

Tippen Sie auf **Limit**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt Limit auf die Standardeinstellung *Limit.*
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Stepped

Bestimmt die Wave-Interpolation beim Verwenden von **Travel** und Modulationen.

- **Smooth**: Verwendet eine sehr glatte Interpolation, um einen sauberen Wavetable-Sound zu erzeugen.
- **Stepped**: Es wird keine Interpolation verwendet, um einen unverfälschten Klang zu erzeugen.
- **2/4/8 Steps**: Nur jede zweite, vierte oder achte Welle wird interpoliert. Das erzeugt einen härteren Klangcharakter bei einige Wavetables.

Tippen Sie auf **Stepped**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt Stepped auf die Standardeinstellung ting *Smooth.*
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

FX Type

Bestimmt den Sättigungs-/Verstärkungs-Typ, der dem Wavetable-Signal hinzugefügt wird. Der entsprechende Betrag kann mit dem **FX**-Parameter im Oszillator-Bereich eingestellt werden.

- Drive: Wählt einen Drive-Type für die Signalsättigung.
- **Gain:** Wählt nach dem Wavetable-Oszillator eine zusätzliche Verstärkungsstufe zum Einstellen des Oszillatorpegels aus.
- **Off:** Es wird kein FX-Typ verwendet. Der **FX**-Parameteregler besitzt keine Funktion.

Tippen Sie auf **FX Type**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt FX Type auf die Standardeinstellung *Drive.*
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Die Tools-Schaltfläche

Tippen Sie auf die **Tools**-Schaltfläche, um ein Aufklapp-Menü mit Funktionen zum Erstellen und Exportieren eigener Wavetables zu öffnen. Folgende Optionen stehen zur Verfügung:

- **Talk**: Ermöglicht die Eingabe eines oder mehrerer Wörter über das sich automatisch öffnende virtuelle Eingabe-Keyboard. Diese Wörter werden in eine Wavetable synthestisiert, wenn Sie *Return* antippen.
- Analyze Audio: Ermöglicht die Anwahl und den Import einer WAV-Datei aus dem Audio File-Browser des Quantum. Diese Audiodatei wird dann in eine Wavetable synthetisiert. Wählen Sie ein gewünschtes Audiofile aus und tippen dann auf Analyze.
- Load Single Cycle: Laden Sie eine Single-Cycle-Waveform aus dem internen Flash-Speicher (Internal) oder von einer angeschlossenen SD-Karte in den Flash-Speicher des Quantum. Eine Singlecycle-Wellenform besteht aus einer sehr kurze Wav/Aif-Datei, deren Samples als einzelne Zyklen einer Wave interpretiert werden. Geeignete Sample-Größen liegen zwischen 200 und 1024. Die Größe kann dabei ungerade sein. Sie können auch längere Dateien verwenden, die Wellenform wird jedoch auf maximal 1024 Samples gemittelt. Dabei wird eine Wavetable mit 8 Positionen erstellt,

die die Singlecycle-Wellen zu einer Sinuswelle transformiert.

- () Kostenlose Single-Cycle-Wellenformen finden Sie hier:https://www.adventurekid.se/akrt/wavefor ms. Es gibt im Internet auch viele weitere kostenlose und kommerzielle Wellenformen.
- **Import from .wav**: Erzeugt eine Wavetable aus .wav/.aiff-Dateien, die eine konstante Sampleperiode verwenden. Dise Periode kann im Import-Dialogfenster von 64 bis 4096 festgelegt werden. Viele gängige Synthesizer verwenden 2048.

Wavetable Import-Dialogfenster

- Load Wavetable: Importiert eine Wavetable aus dem internen Flash-Speicher (Internal) oder einer angeschlossenen SD-Karte in den Flash-Speicher des Quantum. Auf diese Weise können Sie User-Wavetables mit anderen Quantum-Benutzern austauschen.
- **Save Wavetable**: Exportiert die aktuelle Wavetable in den internen Flash-Speicher (Internal) oder auf eine angeschlossene SD-Karte. Auf diese Weise können Sie Ihre selbst erstellten Wavetables mit anderen Quantum-Benutzern austauschen.
- () Nachdem ein User-Wavetable aus einer externen Datei geladen/analysiert wurde, zeigt das Display die Schaltflächen **Prev/Next**, um schnell alle Dateien im selben Ordner zu durchsuchen.

Die Presets-Schaltfläche

Tippen Sie auf die Presets-Schaltfläche, um ein Aufklapp-Fenster zum Laden, Speichern und Verwalten von Wavetable-Oszillator-Einstellungen zu öffnen. Hier stehen folgende Optionen zur Verfügung:

• Auf der linken Seite finden Sie eine Liste aller Wavetable-Oszillator-Presets. Tippen Sie auf den gewünschten Namen, um ihn auszuwählen und sofort zu laden. Die aktuellen Einstellungen des Wavetable-Oszillators werden dabei überschrieben.

- Mit **Save** lassen sich die aktuellen Einstellungen des Wavetable-Oszillators speichern. Sie können hier auch einen gewünschten Namen für das Preset eingeben.
- **Import**: Importiert ein Wavetable-Oszillator-Preset von einer angeschlossenen SD-Karte in den Flash-Speicher des Quantum. Das importierte Preset wird in der Presetliste des Wavetable-Oszillators angezeigt.
- **Export**: Exportiert das aktuell ausgewählten Wavetable-Oszillatorpreset auf eine angeschlossene SD-Karte.
- **Delete**: Löscht das aktuell ausgewählte Wavetable-Oszillator-Preset nach einer Sicherheitsbestätigung.
- Init: Initialisiert den aktuell ausgewählten Wavetable-Oszillator auf seine Standardeinstellungen.
- **Close**: Schließt das Aufklapp-Fenster. Hierbei findet keine weitere Aktion statt.

Der Waveform-Oszillator

Der Waldorf Quantum erzeugt neben typischen Analogwellenformen (Sägezahn, Dreieck etc.) auch klassische Wellenformen wie Rechteck und Sinus. Zusätzlich können unterschiedliche Rauscharten erzeugt werden.

Der Waveform-Oszillator kann bei Bedarf gleichzeitig bis zu acht Oszillatorsignale (sogenannte Kernel) erzeugen. Hiermit können Sie zum Beispiel Supersaw-Waves produzieren.

Drücken Sie den Waveform-Taster, um den Waveform-Oszillator für den gewünschten Oszillator 1, 2 oder 3 zu

aktivieren. Der gesamte Oszillator-Bereich leuchtet dann grün.

- (!) Eine Einführung in de Waveform-Oszillatoren finden Sie im Anhang dieses Handbuchs.
- (!) Weitere Bedienparameter finden Sie auf der entsprechenden Oszillator-Displayseite. Lesen Sie mehr dazu auf den nachfolgenden Seiten.

Die Waveform-Oszillator Panel-Parameter

Semitones

Bestimmt die Tonhöhe des Waveform-Oszillators in Halbtonschritten. Die Standardeinstellung dieses Parameters ist θ , in einigen Fällen sind jedoch auch andere Werte erwünscht.

Fine Pitch

Stellt die Feinstimmung des Waveform-Oszillators in 128steln eines Halbtons ein. Das Verstimmen der Oszillatoren gegeneinander bewirkt eine hörbare Schwebung, die einem Chorus ähnelt. Verwenden Sie eine positive Verstimmung für einen Oszillator und den gleichen negativen Wert für einen anderen.

Count

Der Waveform-Oszillator kann bis zu acht Oszillatoren gleichzeitig erzeugen. Dies wird mit den **Count**-Regler bestimmt. Bis zu acht Kernel (das Äquivalent zu den Oszillatoren) sind möglich. Werte zwischen zwei ganzzahligen Werten bedeuten, dass ein zusätzlicher Oszillator mit einem reduzierten Pegel hinzugemischt wird.

(!) Nutzen Sie **Count**, um zum Beispiel Supersawähnliche Wellenformen zu erzeugen.

Detune

Verstimmt den Multi-Oszillator, wenn **Count** auf einen Kernelwert von mehr als 1.0 eingestellt ist.

Shape

Nutzen Sie den **Shape**-Drehregler, um eine gewünschte Wellenform auszuwählen. Die folgenden Wellenformen sind verfügbar:

- *Sawtooth* wählt die Sägezahn-Wellenform an. Sie enthält alle Obertöne, wobei deren Lautstärken sich in einem bestimmten Verhältnis verringern.
- *Sine* besteht nur aus der Grundfrequenz. Die Sinus-Wellenform besitzt keine Obertöne.
- *Triangle* wählt die Dreieck-Wellenform an. Sie enthält ungerade Obertöne mit sehr geringen Lautstärken.
- *Square* wählt die Rechteck-Wellenform an. Eine Rechteckwelle mit einer Pulsbreite von 50% enthält nur die ungeraden Obertöne. Diese Wellenform erzeugt einen hohlklingenden metallischen Sound.

- *Pink Noise* (Rosa Rauschen) bei diesem Rauschen sind die tiefen Frequenzen lauter als höhere, der Pegel nimmt pro Oktave um 3 dB ab. Dieses Rauschspektrum entspricht eher dem, was unser Gehör als ungefärbtes Rauschen empfindet.
- White Noise (Weißes Rauschen) ist ein grundlegender Bestandteil für alle Arten von analog-typischen Schlaginstrumenten und erzeugt über den gesamten Frequenzbereich denselben Pegel. Auch Klänge wie Wind und andere "Naturgewalten" basieren zum überwiegenden Teil auf Rauschen.

Warp

Abhängig von der ausgewählten **Shape** ändert die **Warp**-Funktion die Grundform einer Welle.

- Wenn *Sawtooth* ausgewählt ist, blendet **Warp** von einer Doppelsägezahnwelle (niedrigste Einstellung) über eine regulären Sägezahnwelle (mittlere Einstellung) in eine Rechteckwelle (höchste Einstellung) über.
- Wenn *Sine* ausgewählt ist, blendet **Warp** von einer langsam aufsteigenden Sägezahnwelle (niedrigste Einstellung) über eine reguläre Sinuswelle (mittlere Einstellung) in eine langsam absteigende Sägezahnwelle (höchste Einstellung) über.

- Wenn *Triangle* ausgewählt ist, blendet **Warp** von einer aufsteigenden Sägezahnwelle (niedrigste Einstellung) über eine regulären Dreieckwelle (mittlere Einstellung) in eine absteigende Sägezahnwelle (höchste Einstellung) über.
- Wenn *Square* ausgewählt ist, ändert **Warp** die Pulsbreite der Rechteckwelle.
- Wenn *Pink Noise* oder *White Noise* ausgewählt ist, blendet **Warp** von einem gefilterten Rauschen (niedrigste Einstellung) über die ausgewählte Rauschart (mittlere Einstellung) in ein gepitchtes Rauschen (höchste Einstellung) über.

Sync

Fügt der ausgewählten Oszillatorwellenform eine typische Oszillatorsynchronisation hinzu (mit Ausnahme der Noise-Typen). Infolgedessen können interessante Soundeffekte erzeugt werden, insbesondere bei höheren **Sync**-Einstellungen.

Die Waveform-Oszillator Display-Seiten

Um auf die Waveform-Oszillator Display-Seiten zugreifen zu können, drücken Sie den entsprechende OSC-Taster 1, 2 oder 3 oberhalb des Displays.

Hier können Sie zwischen zwei Modi wechseln: **Control** und **Timbre**. Tippen Sie auf die entsprechende Registerkarte, um diese auszuwählen. Die Anzeige wechselt in diesen Modus. Eine dritte Registerkarte zeigt das aktuelle Oszillatormodell an. Tippen Sie darauf, um ein anderes Modell auszuwählen oder um es auszuschalten (*Off*).

Control Mode Tab

Hier finden Sie Parameter zur Stimmung und weitere Einstellungen. Die Funktionen und Optionen entsprechen denen des Wavetable-Oszillators. Bitte lesen Sie hierzu das entsprechende Kapitel.

Timbre Mode Tab

Hier finden Sie spezifische Parameter für die Waveform-Oszillatoren.

Der Timbre-Modus des Waveform-Oszillators

Shape

Gleiche Funktionalität wie der entsprechende Panel-Parameter.

Tippen Sie auf **Shape**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt Shape auf die Standardeinstellung *Sawtooth.*
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.

• **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Warp

Gleiche Funktionalität wie der entsprechende Panel-Parameter.

Tippen Sie auf **Warp**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Warp-Wertänderung beträgt 1 %.
- **Fine**: Die Warp-Wertänderung beträgt 0.1 %.
- Super Fine: Die Warp-Wertänderung beträgt 0.01 %.
- Set Default: Stellt Warp auf die Standardeinstellung 50.0 %.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.

• **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Sync

Gleiche Funktionalität wie der entsprechende Panel-Parameter.

Tippen Sie auf **Sync**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Sync-Wertänderung beträgt 0.3 semi.
- Fine: Die Sync-Wertänderung beträgt 0.03 semi
- Super Fine: Die Sync-Wertänderung beträgt 0.003 semi.
- **Set Default**: Stellt Sync auf die Standardeinstellung *0.0* %.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.

• **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Count

Gleiche Funktionalität wie der entsprechende Panel-Parameter.

Tippen Sie auf **Count**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Count-Wertänderung beträgt 0.3 semi.
- Fine: Die Count-Wertänderung beträgt 0.03 semi
- **Super Fine**: Die Count-Wertänderung beträgt 0.003 semi.
- Set Default: Stellt Count auf die Standardeinstellung 1.0 kernels.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Detune

Gleiche Funktionalität wie der entsprechende Panel-Parameter.

Tippen Sie auf **Detune**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Detune-Wertänderung beträgt 0.3 cents.
- Fine: Die Detune-Wertänderung beträgt 0.03 cents
- **Super Fine**: Die Detune-Wertänderung beträgt 0.003 cents.
- Set Default: Stellt Detune auf die Standardeinstellung 0.0 % cents.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Stereo

Wenn **Count** auf einen Kernelwert größer als 1.0 eingestellt ist, bestimmt dieser Parameter das Stereo-Panorama für jedes gespielte Oszillator-Kernelsignal. In der *Center*-Einstellung werden alle Oszillatoren auf beiden Stereokanälen gespielt. Höhere Einstellungen verschieben die Signale innerhalb des Stereofeldes.

Tippen Sie auf **Stereo**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Stereo-Wertänderung beträgt 2 degree.
- Fine: Die Stereo-Wertänderung beträgt 1 degree.
- **Super Fine**: Die Stereo-Wertänderung beträgt 0.1 degree.
- Set Default: Stellt Stereo auf die Standardeinstellung 0.0 %.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Semitone 1 - 4

Hier können Sie die ersten vier Oszillator-Kernel separat in Halbtönen transponieren. Wenn mehr als vier Kernel ausgewählt sind, verwenden die Kernel 5 bis 8 die gleichen Tonhöheneinstellungen wie die Kernel 1 bis 4. Tippen Sie auf die entsprechende **Semitone**-Schaltfläche, um ein Aufklapp-Menü mit den verfügbaren Halbtoneinstellungen von -12 bis +12 zu öffnen.

Tippen Sie auf **Semitone 1 - 4**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt Semitone auf die Standardeinstellung +0.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Phase

Legt die Startphase der ausgewählten Oszillator-Wellenform fest.

- **Running** verhält sich wie freilaufende Oszillatoren bei analogen Synthesizern. Eine gespielte Note "springt" hierbei in den aktuellen Phasenzyklus.
- **Reset** zwingt die Oszillator-Wellenform für jede gespielte neue Note mit einer Phase von 0 zu beginnen. Verwenden Sie diese Einstellung, wenn Sie perkussive Sounds erzeugen möchten, bei denen jede gespielte Note in der Attack-Phase gleich klingt.

Tippen Sie auf **Phase**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt Phase auf die Standardeinstellung *Running.*
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Presets

Tippen Sie auf die **Presets**-Schaltfläche, um ein Aufklapp-Fenster zum Laden, Speichern und Verwalten von Waveform-Oszillator-Einstellungen zu öffnen. Die Erklärung zu allen Optionen finden Sie im entsprechenden Presets-Kapitel des Wavetable-Oszillators.

Der Particle-Generator

Drücken Sie den Particle-Taster, um den Particle-Generator für den gewünschten Oszillator 1, 2 oder 3 zu aktivieren. Der gesamte Oszillator-Bereich leuchtet dann blau.

Dieser Generator erzeugt seinen Klang durch die Wiedergabe von Audio-Samples. Es sind zwei verschiedene Arten der Sample-Wiedergabe möglich: normale und granulare Wiedergabe.

Der Partikel-Generator muss mit einem oder mehreren Samples "gefüttert" werden. Er kann entweder nur ein einzelnes Sample nutzen, aber auch mehrere Samples, die über die Tastatur verteilt werden.

(!) Informationen zum Laden und Bearbeiten von Samples finden Sie im Kapitel "Laden und Bearbeiten von Samples".

Es gibt mehrere Möglichkeiten, Samples für die weitere Verwendung zu nutzen:

• Aus dem internen Flash-Speicher des Quantum. Hier finden Sie zahlreiche Factory-Samples, die in den Particle-Generator geladen werden können.

- Von einer SD-Karte: Sie können eigene Samples von einer angeschlossenen SD-Karte in den internen Flash-Speicher des Quantum importieren und von dort dann in den Particle-Generator laden.
- Von mit dem Quantum erstellten Audioaufnahmen. Im **Global**-Menü finden Sie einen Audiorecorder. Alle aufgenommenen Dateien werden im internen Flash-Speicher abgelegt und können von dort in den Particle-Generator geladen werden.
- Über den Audioeingang des Quantum im Live-Granular-Modus. Lesen Sie mehr hierzu im entsprechenden Abschnitt.
- (!) Der Quantum ist in der Lage, WAV- und AIFF/AIFC-Samples mit Bitraten von 8 bis 32 (einschließlich Floating-Point-Formate) und allen gängigen Sample-Raten zu laden. Wir empfehlen eine Samplerate von 44.1 kHz.
- (!) Eine kurze Einführung in die Granularsynthese finden Sie im Anhang dieses Handbuchs.
- Weitere Bedienparameter finden Sie auf der entsprechenden Oszillator-Displayseite. Lesen Sie mehr dazu auf den nachfolgenden Seiten.

Die Particle-Generator Panel-Parameter

Semitones

Bestimmt die Tonhöhe des Waveform-Oszillators in Halbtonschritten. Die Standardeinstellung dieses Parameters ist θ , in einigen Fällen sind jedoch auch andere Werte erwünscht.

Fine Pitch

Stellt die Feinstimmung des Waveform-Oszillators in 128steln eines Halbtons ein. Das Verstimmen der Oszillatoren gegeneinander bewirkt eine hörbare Schwebung, die einem Chorus ähnelt. Verwenden Sie eine positive Verstimmung für einen Oszillator und den gleichen negativen Wert für einen anderen.

Count/Grain Poly (nur im Granular-Modus)

Der Partikel-Generator kann bis zu acht Grain-Streams für eine gleichzeitige Wiedergabe erzeugen. Dies wird mit dem **Count/Grain Poly**-Regler bestimmt. Bis zu acht Kernel (das Äquivalent zu Grain-Oszillatoren) sind möglich. Werte zwischen zwei ganzzahligen Werten bedeuten, dass ein zusätzlicher Grain-Oszillator mit reduziertem Pegel hinzugemischt wird.

Detune/Pitch Spread (nur im Granular-Modus)

Bestimmt die Anzahl der Grains, die von der Grundtonhöhe verschoben werden, wenn **Count/Grain Poly** auf einen Kernelwert größer als 1.0 eingestellt ist.

Position (nur im Granular-Modus)

Legt die Startposition des Samples für die Grain-Wiedergabe fest. Je höher der Wert, desto später beginnt das Sample.

Length (nur im Granular-Modus)

Stellt die Grain-Länge ein, die für die Wiedergabe verwendet wird. Je höher der Wert (bis zu 250 ms), desto genauer die Wiedergabe.

Travel (nur im Granular-Modus)

Legt die Geschwindigkeit fest, mit der die Position innerhalb des Samples "wandert". Dies ermöglicht eine zyklische Bewegung durch ein Granular-Sample. Positive Werte erzeugen eine Vorwärtsbewegung, negative Werte eine Rückwärtsbewegung. Niedrigere Werte verlangsamen die Bewegungsgeschwindigkeit, höhere Werte beschleunigen sie entsprechend. Zyklisch bedeutet, dass ein Sample automatisch wieder beginnt, wenn das Ende erreicht ist. Wenn Sie keine zyklische Modulation wünschen, modulieren Sie den **Position**-Parameter mit einer Hüllkurve, einem LFO oder einer anderen Modulationsquelle. Sie können auch verschiedene **Travel Modes** einrichten. Lesen Sie hierzu den entsprechenden Abschnitt weiter unten.

Die Particle-Generator Display-Seite

Um auf die Particle-Generator Display-Seite zugreifen zu können, drücken Sie den entsprechende OSC-Taster 1, 2 oder 3 oberhalb des Displays.

Hier können Sie zwischen zwei Modi wechseln: **Control** und **Timbre**. Tippen Sie auf die entsprechende Registerkarte, um diese auszuwählen. Die Anzeige wechselt in diesen Modus. Eine dritte Registerkarte zeigt das aktuelle Oszillatormodell an. Tippen Sie darauf, um ein anderes Modell auszuwählen oder um es auszuschalten (*Off*).

Control Mode Tab

Hier finden Sie Parameter zur Stimmung und weitere Einstellungen. Die Funktionen und Optionen entsprechen denen des Wavetable-Oszillators. Bitte lesen Sie hierzu das entsprechende Kapitel.

Timbre Mode Tab

Hier finden Sie spezifische Parameter für den Particle-Generator sowie die Option zum Laden von Samples in den Generator.

Die Anzeige visualisiert die Verläufe und Grain-Verteilung.

Die Particle / Sample-Schaltflächen

Tippen Sie auf die entsprechende Schaltfläche, um zwischen **Particle**- und **Sample**-Modus zu wechseln. Je nach ausgewähltem Modus unterscheiden sich die Anzeigeparameter.

- (1) Die Particle-Parameterseite ist nur erreichbar, wenn der Modus auf "Granular" eingestellt ist. Sie können hierzu die Schaltfläche Particles tippen (und den Granular Mode-Schalter bestätigen) oder *Granular* mit dem **Mode**-Parameter auswählen.
- Informationen zum Laden und Bearbeiten von Samples finden Sie im Kapitel "Laden und Bearbeiten von Samples".

Position (nur im Granular-Modus)

Gleiche Funktionalität wie der entsprechende Panel-Parameter.

Tippen Sie auf **Position**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Normal**: Die Sample Position-Wertänderung beträgt 0.01.
- **Fine**: Die Sample Position-Wertänderung beträgt 0.001.
- **Super Fine**: Die Sample Position-Wertänderung beträgt 0.0001.
- **Set Default**: Stellt Position auf die Standardeinstellung *0.00.*

- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Position Jitter (Pos Jitter, nur im Granular-Modus)

Bestimmt den Betrag, um den die Grain-Position randomisiert wird. Je höher dieser Wert, desto zufälliger der Samplestart basierend auf der anfänglichen **Position**-Einstellung.

Tippen Sie auf **Pos Jitter**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Normal**: Die Position Jitter-Wertänderung beträgt 0.01.
- Fine: Die Position Jitter-Wertänderung beträgt 0.001.
- **Super Fine**: Die Position Jitter-Wertänderung beträgt 0.0001.

- **Set Default**: Stellt die Sample Position-Variation auf die Standardeinstellung *0.30.*
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Travel (nur im Granular-Modus)

Gleiche Funktionalität wie der entsprechende Panel-Parameter.

Tippen Sie auf **Travel**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Travel-Wertänderung beträgt 2%.
- Fine: Die Travel-Wertänderung beträgt 0.2%.
- **Super Fine**: Die Travel-Wertänderung beträgt 0.02%.
- **Set Default**: Stellt Travel auf die Standardeinstellung +0.0%.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.

- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Length (nur im Granular-Modus)

Gleiche Funktionalität wie der entsprechende Panel-Parameter.

Tippen Sie auf **Length**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Length-Wertänderung beträgt 2.5 msec.
- Fine: Die Length-Wertänderung beträgt 0.25 msec.
- **Super Fine**: Die Length-Wertänderung beträgt 0.025 msec.
- Set Default: Stellt Length auf die Standardeinstellung 0.00.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.

- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Gate Length (nur im Granular-Modus)

Bestimmt die Längen-Intensität, die für die Verlaufskurve verwendet wird - ähnlich einem Gate-Parameter. Niedrigere Werte erzeugen Lücken zwischen den Grains. Die **Gate Length** kann auch als Dichte bezeichnet werden.

Tippen Sie auf **Gate Length**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Gate Length-Wertänderung beträgt 0.9%.
- Fine: Die Gate Length-Wertänderung beträgt 0.09 %.
- **Super Fine**: Die Gate Length-Wertänderung beträgt 0.009 %.
- Set Default: Stellt Gate Length auf die Standardeinstellung 100.0%.

- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Grain Jitter (nur im Granular-Modus)

Bestimmt den Betrag, mit dem die Grain-Länge und das Gate randomisiert werden.

Tippen Sie auf **Grain Jitter**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Grain Jitter-Wertänderung beträgt 1 %.
- Fine: Die Grain Jitter-Wertänderung beträgt 0.1 %.
- **Super Fine**: Die Grain Jitter-Wertänderung beträgt 0.01 %.
- **Set Default**: Stellt Grain Jitter auf die Standardeinstellung 0.0%.

- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Travel Mode (nur im Granular-Modus)

Für den Granular-Zyklusprozess stehen verschiedene Modi zur Auswahl:

- **Continuous**: Ein Granular-Sample beginnt automatisch wieder am Anfang, wenn das Ende erreicht ist. Jede gespielte Note startet ihren eigenen Travelzyklus.
- **One Shot**: Ein Granular-Sample stoppt, wenn das Ende erreicht ist. Jede gespielte Note startet ihren eigenen Travelzyklus.
- **Ping Pong**: Ein Granular-Sample startet automatisch eine Rückwärtswiedergabe, wenn das Ende erreicht ist und umgekehrt. Jede gespielte Note startet ihren eigenen Travelzyklus.

• **Global**: Ein Granular-Sample beginnt automatisch wieder vom Anfang, wenn das Ende erreicht ist. Jede gespielte Note nutzt hierbei ihren eigenen Travelzy-klus.

Tippen Sie auf **Travel Mode**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt Travel Mode auf die Standardeinstellung *Continuous*.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Attack (nur im Granular-Modus)

Bestimmt die Attackphase eines Grains. Je höher der Wert, desto glatter wird die Wiedergabe der Grains dabei. **Attack** kann das Klangspektrum stark beeinflussen.

Tippen Sie auf **Attack**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

• **Set Default**: Stellt Attack auf die Standardeinstellung 0.25.

- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Decay (nur im Granular-Modus)

Bestimmt die Decayphase eines Grains. Je höher der Wert, desto glatter wird die Wiedergabe der Grains. **Decay** kann das Klangspektrum stark beeinflussen.

Tippen Sie auf **Decay**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt Count auf die Standardeinstellung 0.25.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Mo-

dulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.

• **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Grain Poly (nur im Granular-Modus)

Gleiche Funktionalität wie der entsprechende Panel-Parameter.

Tippen Sie auf **Grain Poly**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Set Default: Stellt Grain Poly auf die Standardeinstellung 8.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Stereo Width

Die Grain-Streams werden je nach Einstellung dieses Parameters nach links/rechts verschoben. Er bestimmt also die Position der Grain-Streams im Stereofeld. Je niedriger der Wert, desto geringer die Stereobreite (0% ist mono).

Tippen Sie auf **Stereo Width**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Stereo Width-Wertänderung beträgt 1.0 %.
- **Fine**: Die Stereo Width-Wertänderung beträgt 0.1%.
- Super Fine: Die Wertänderung beträgt 0.01%.
- Set Default: Stellt Stereo Width auf die Standardeinstellung 50.0%.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.
- Wird ein Granular-Stereo-Sample durch den Dual-Analog-Filter geleitet, ist es aufgrund des Monosignalpfads in dieser Schaltung automatisch auch mono.

Die Grain Pitch-Schalfläche

Auf dieser Anzeigeseite können Sie Einstellungen zur Abstimmung des granularen Tonhöhenverhaltens vornehmen.

	Control		Timbre		Particle		
Pitch Spread 0.10 Normal Mod	Particl	e S	amples	Grain Pit	ich f	Presets	
Pitch Mode Cluster Pitch litter							
+/- 0.0 cents Normal	0 Semitone 1	0 Semitone 2	0 Semitone 3	0 Semitone 4	0 Semitone 5	0 Semitone 6	
0005 Dry Funky Mono							

Pitch Spread

Bestimmt den Betrag, um den die Grains von der Grundtonhöhe verschoben werden.

Tippen Sie auf **Pitch Spread**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Pitch Spread-Wertänderung beträgt 0.1
- Fine: Die Pitch Spread-Wertänderung beträgt 0.01.
- **Super Fine**: Die Pitch Spread-Wertänderung beträgt 0.001.
- **Set Default**: Stellt Pitch Spread auf die Standardeinstellung 0.10.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Pitch Mode

Bestimmt, mit welcher Methode die Tonhöhen geändert werden. Sie können zwischen fünf Optionen wählen:

• **Random**: Randomisiert die Tonhöhe für jedes Grain beim Grain-Start.

- **Cluster**: Verschiebt jede gleichweit entfernte Spur von ihrer benachbarten Spur.
- **Spread**: Funktioniert ähnlich wie *Cluster*, aber mit einer größeren Streuung, wobei die Gesamtamplitude (von der obersten zur untersten Spur) unabhängig von der eingestellten **Grain Poly** konstant gehalten wird.
- **Mapped**: Verschiebt die Grains basierend auf einer Semitone-Map mit bis zu sechs einstellbaren Intervallen. Diese Intervalle (**Semitones**) lassen sich im unterem Bereich der Anzeigeseite einstellen.
- **Mapped Random**: Funktioniert wie *Mapped*, aber der Grain Pitch wird bei jedem Start der Grains zufällig aus der Semitone-Map ausgewählt.

Für die Mapped-Modi bestimmt der **Pitch Spread**-Parameter, wie viele Teile der Semitone-Map verwendet werden. Bei niedrigeren Werten werden beispielsweise nur der erste oder zwei Halbtöne verwendet. In der Maximaleinstellung werden alle Halbtoneinstellungen verwendet. **Pitch Spread** kann moduliert werden, so dass Sie einen Akkord oder Skalen animieren können. Die **Semitone**-Einstellungen müssen nicht in einer bestimmten Reihenfolge gemacht sein, wie etwa aufsteigend oder abnehmend.

Tippen Sie auf **Pitch Mode**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt Pitch Mode auf die Standardeinstellung *Cluster*.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Pitch Jitter

Fügt unabhängig von der aktuellen Tonhöhe eine zusätzliche zufällige Tonhöhe hinzu.

Tippen Sie auf **Pitch Jitter**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Pitch Jitter-Wertänderung beträgt 2 cents.
- Fine: Die Pitch Jitter-Wertänderung beträgt 0.2 cents.
- **Super Fine**: Die Pitch Jitter-Wertänderung beträgt 0.02 cents.
- **Set Default**: Stellt Pitch Jitter auf die Standardeinstellung +/- 0.0 cents.

- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Semitone 1 - 6

Hier können Sie eine "Map" mit bis zu sechs Intervallen einrichten – siehe auch **Pitch Mode**. Tippen Sie auf die entsprechende **Semitone**-Schaltfläche, um ein Aufklapp-Menü mit den verfügbaren Halbtoneinstellungen von -*0* bis *24* zu öffnen.

Tippen Sie auf **Semitone 1 - 6**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt Semitone auf die Standardeinstellung *0*.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Presets

Tippen Sie auf die **Presets**-Schaltfläche, um ein Aufklapp-Fenster zum Laden, Speichern und Verwalten von Particle-Generator-Einstellungen zu öffnen. Die Erklärung zu allen Optionen finden Sie im **Presets**-Kapitel des Wavetable-Oszillators.

Der Resonator

Drücken Sie den Resonator-Taster, um den Resonator für den gewünschten Oszillator 1, 2 oder 3 zu aktivieum Den geweinte Oszillator Bengick lag.

Resonator

ren. Der gesamte Oszillator-Bereich leuchtet dann rot.

(!) Weitere Bedienparameter finden Sie auf der entsprechenden Resonator-Displayseite. Lesen Sie mehr dazu auf den nachfolgenden Seiten.

Das Grundkonzept des Resonators ist die Erzeugung von Klängen unter Verwendung eines anfänglichen Anregungssignals (meistens ein kurzer Rauschimpuls), welches durch eine Bandpassfilterbank geschickt wird. Dort erzeugen deren Resonanzfilter schließlich einen resonierenden sinusartigen Sound.

Mittels verschiedener Timbre-Modi können die Obertöne des Resonator-Signals auf viele Arten eingestellt werden.

Der Resonator kann auch durch ein oder mehrere Samples gespeist werden (anstatt einen Rauschimpuls zu verwenden). Sie können ein einzelnes Sample oder mehrere über die Tastatur verteilte Samples laden.

- Image: Second Second
- Informationen zum Laden und Bearbeiten von Samples finden Sie im Kapitel "Laden und Bearbeiten von Samples".

Die Resonator Panel-Parameter

Semitones

Bestimmt die Tonhöhe des Resonators in Halbtonschritten. Die Standardeinstellung dieses Parameters ist *0*, in einigen Fällen sind jedoch auch andere Werte erwünscht.

Fine Pitch

Stellt die Feinstimmung des Resonators in 128steln eines Halbtons ein. Das Verstimmen der Oszillatoren gegeneinander bewirkt eine hörbare Schwebung, die einem Chorus ähnelt. Verwenden Sie eine positive Verstimmung für

einen Oszillator und den gleichen negativen Wert für einen anderen.

Repeats

Bestimmt, wie oft das Anregungssignal wiederholt wird. Je größer der Wert (bis zu 16), desto mehr Wiederholungen sind im Klang enthalten. Die Geschwindigkeit der Wiederholungen hängt von der **Decay**-Einstellung auf der Resonator-Displayseite ab.

Spread

Erweitert oder komprimiert die Teiltöne des Resonators, was zu massiven Klangfarbenänderungen führen kann. Es gibt zwei **Spread**-Modi, die auf der Resonator-Displayseite eingestellt werden können.

Timbre

Basierend auf dem **Timbre Mod** auf der Resonator-Displayseite ändert dieser Parameter die Struktur der Teiltöne. In einigen Fällen funktioniert dies ähnlich wie bei einem Filter, der Obertöne beschneidet. In anderen Fällen werden die Teiltöne betont.

Exciter

Bestimmt den Klang des Anregungssignal. Bei einer EInstellung vollständig gegen den Uhrzeigersinn wird ein kurzer Impuls erzeugt, während höhere Einstellungen diesen Impuls in ein kurzes Rauschen überblenden. Verwenden Sie höhere Einstellungen, wenn Sie das Anblasgeräusch eines Blasinstruments simulieren möchten. Wird ein geladenes Sample als Anregungssignal verwendet, beeinflusst dieser Parameter den Klang des Samples.

Informationen zum Laden und Bearbeiten von Samples finden Sie im Kapitel "Laden und Bearbeiten von Samples".

Q

Bestimmt die Resonanz der erzeugten Teiltöne. Je höher die Einstellung, desto länger die Dauer der Sounds.

Die Resonator Display-Seite

Um auf die Resonator Display-Seite zugreifen zu können, drücken Sie den entsprechende OSC-Taster 1, 2 oder 3 oberhalb des Displays.

Hier können Sie zwischen zwei Modi wechseln: **Control** und **Timbre**. Tippen Sie auf die entsprechende Registerkarte, um diese auszuwählen. Die Anzeige wechselt in diesen Modus. Eine dritte Registerkarte zeigt das aktuelle Oszillatormodell an. Tippen Sie darauf, um ein anderes Modell auszuwählen oder um es auszuschalten (*Off*).

Control Mode

Hier finden Sie Parameter zur Stimmung und weitere Einstellungen. Die Funktionen und Optionen entsprechen denen des Wavetable-Oszillators. Bitte lesen Sie hierzu das entsprechende Kapitel.

Timbre Mode

Hier finden Sie spezifische Parameter für den Resonator.

Q

Gleiche Funktionalität wie der entsprechende Panel-Parameter.

Tippen Sie auf **Q**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Q-Wertänderung beträgt 0.01.
- Fine: Die Q-Wertänderung beträgt 0.001.
- Super Fine: Die Q-Wertänderung beträgt 0.0001.
- Set Default: Stellt Q auf die Standardeinstellung 0.68.

- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Q Curve

Bestimmt das Resonanzverhalten der Teiltöne. Je höher die Einstellung, desto mehr Teiltöne werden hervorgehoben.

Tippen Sie auf **Q Curve**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Q Curve-Wertänderung beträgt 0.01.
- **Fine**: Die Q Curve-Wertänderung beträgt 0.001.
- **Super Fine**: Die Q Curve-Wertänderung beträgt 0.0001.
- **Set Default**: Stellt Q Curve auf die Standardeinstellung *0.32.*

- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Spectrum Skew

Bestimmt den Pegel der Teiltöne im Verhältnis zu sich selbst. Je höher die Einstellung, desto weicher der Klang. Sehr niedrige Werte führen zu Partials mit einem ähnlichen Pegel.

Tippen Sie auf **Spectrum Skew**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Normal**: Die Spectrum Skew-Wertänderung beträgt 0.01.
- Fine: Die Spectrum Skew-Wertänderung beträgt 0.001.
- **Super Fine**: Die Spectrum Skew-Wertänderung beträgt 0.0001.
- Set Default: Stellt Spectrum Skew auf die Standardeinstellung 0.25.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.

• **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Attack

Funktioniert ähnlich wie der Attack-Parameter einer Hüllkurve. Er steuert die Attackphase des Anregungssignals Je mehr Obertöne dieses Signal besitzt (wenn z. B. der **Exciter**-Parameter auf Maximum eingestellt ist), desto stärker wird es vom **Attack**-Parameter beeinflusst.

Tippen Sie auf **Attack**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Attack-Wertänderung beträgt 0.01.
- Fine: Die Attack-Wertänderung beträgt 0.001.
- **Super Fine**: Die Attack-Wertänderung beträgt 0.0001.
- **Set Default**: Stellt Attack auf die Standardeinstellung 0.00.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Decay

Bestimmt die Decayphase des Anregungssignals. Wenn **Repeat** auf 1 eingestellt ist, hat dieser Parameter keine Auswirkung. Bei höheren **Repea**t-Einstellungen steuert **Decay** auch die Geschwindigkeit der Wiederholungen.

Tippen Sie auf **Decay**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Normal**: Die Devay-Wertänderung beträgt 0.01.
- Fine: Die Decay-Wertänderung beträgt 0.001.
- **Super Fine**: Die Decay-Wertänderung beträgt 0.0001.
- **Set Default**: Stellt Decay auf die Standardeinstellung 0.10.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Acceleration

Steuert das Wiederholgeschwindigkeitsverhalten. Positive Einstellungen beschleunigen die Geschwindigkeit der Wiederholungen mit der Zeit, während negative Einstellungen sie entsprechend verlangsamen.

Tippen Sie auf **Acceleration**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Acceleration-Wertänderung beträgt 0.01.
- Fine: Die Acceleration-Wertänderung beträgt 0.001.
- **Super Fine**: Die Acceleration-Wertänderung beträgt 0.0001.
- **Set Default**: Stellt Acceleration auf die Standardeinstellung +0.0%.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Timbre Mode

Hier können Sie verschiedene Modi auswählen, die die Oberton-Bearbeitung beeinflussen, wenn Sie den Parameter **Timbre** verwenden.

• Peak Mode: In der niedrigsten Timbre-Einstellung werden die Obertöne exponentiell ausgeblendet. Das

klingt ähnlich wie eine Sägezahnwelle. Höhere Einstellungen erzeugen eine Verschiebung der Obertöne mit zufälligen Peaks. Die maximale Einstellung betont jeden 2. Obertonanteil, so dass das Ergebnis wie eine Rechteckwelle klingt.

- **Sin Mod**: Dieser Modus besitzt fast das gleiche Verhalten wie der *Peak*-Modus, nur dass die maximale Einstellung eine Dreieckswelle erzeugt.
- **Saw-Square**: Dieser Modus beginnt mit einem normalen Ausblenden der Obertöne und entfernt die meisten zweiten Obertöne, wenn **Timbre** aufgedreht wird. Das Ergebnis klingt wie eine Rechteckwelle
- **Sin-Saw**: Dieser Modus beginnt mit einem sinusähnlichen Klang (nur der Grundton ist zu hören). Es werden immer mehr Obertöne hinzugefügt, wenn **Timbre** aufgedreht wird. Das Ergebnis klingt wie eine Sägezahnwelle.
- **Modulo**: In der niedrigsten **Timbre**-Einstellung werden die Obertöne exponentiell ausgeblendet. Das klingt ähnlich wie eine Sägezahnwelle. Je mehr **Timbre** aufgedreht wird, desto mehr Obertöne werden ausgeblendet. Dies erzeugt einen weniger komplexen Klang.

Tippen Sie auf **Timbre Mode**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

68

- Set Default: Stellt den Timbre Mode auf die Standardeinstellung *Peak Mod*.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Spread Mode

Hier können Sie den Abstand der Obertöne festlegen, wenn Sie den **Stretch**-Parameter verwenden.

- **Stretch**: Verwendet einen breiten Bereich für die Dehnenung. Der **Stretch**-Parameter kann eine drastische Änderung der Klangfarbe eines Sounds bewirken.
- **Stiffness**: Verwendet einen kleineren Behnungsbereich. Die Ergebnisse des **Stretch**-Parameters wirken sich weniger drastisch aus.

Tippen Sie auf **Spread Mode**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

• **Set Default**: Stellt den Spread Mode auf die Standardeinstellung *Stretch*.

- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

HiCut

Bestimmt die HiCut-Frequenz für das Abschneiden von hohen Frequenzen. Dieses Filter befindet sich zwischen Exciter und Filterbank. Setzen Sie es dann ein, wenn das Anregungssignal zu viele Obertöne erzeugt.

Tippen Sie auf **HiCut**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Set Default: Stellt HiCut auf die Standardeinstellung 0.10.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Stereo

Verbreitert das Signal im Stereofeld. Beachten Sie, dass ein Signal, das durch das Dual-Analog-Filter geleitet wird, aufgrund des Monosignalpfads dieser Schaltung automatisch auch mono wird. Wenn Sie den vollen Stereo-Effekt hören möchten, sollten Sie das Signal direkt zum VCA oder nur zum Digital Former (*DF 100 Fil 0*) leiten. Dies wird mit dem **Osc Dest**-Parameter auf der **Control**-Displayseite festgelegt.

Tippen Sie auf **Stereo**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt Stereo auf die Standardeinstellung 0.50.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

F0 Boost

F0 ist die Bezeichnung für den Grundton. Dieser Parameter ändert F0 unabhängig von den Obertönen.

Tippen Sie auf **F0 Boost**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt F0 Boost auf die Standardeinstellung *0.15.*
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Presets

Tippen Sie auf die **Presets**-Schaltfläche, um ein Aufklapp-Fenster zum Laden, Speichern und Verwalten von Resonator-Einstellungen zu öffnen. Die Erklärung zu allen Optionen finden Sie im **Presets**-Kapitel des Wavetable-Oszillators.

Der Oszillator-Mixer (OSC MIX)

Im Oszillator-Mixer steuern Sie die Lautstärke der drei Oszillatoren. Ist ein Lautstärkeregler eines Oszillators vollständig gegen den Uhrzeigersinn gedreht, wird kein Signal weitergeleitet. Die LED unter dem entsprechenden Regler leuchtet dann nicht.

Level Osc 1 / Osc 2 / Osc 3

Bestimmt die Lautstärke des entsprechenden Oszillators.

Der Glide-Bereich

Drücken Sie auf den **On-**Taster, um Glide zu aktivieren. "Glide" oder "Portamento" beschreibt das kontinuierliche Gleiten der Tonhöhe von einer Note zur nächsten, wie es bei Streichern und einigen Blasinstrumenten (z.B. Posaune) möglich ist. Beachten Sie, das Glide die Tonhöhe aller Oszillatoren beeinflusst.

GLIDE
O Rate
Туре
On

Rate

Bestimmt die Glide-Zeit. Niedrige Werte erzeugen eine kurze Gleitzeit im Millisekundenbereich, die dem Klang eine besondere Note verleiht. Höhere Werte ergeben eine lange Gleitzeit bis zu mehreren Sekunden, die sich besonders für Solo- und Effektklänge eignet.

Type

Drücken Sie diesen Taster, um zwischen zwei Glide-Modi zu wechseln.

- Onset bedeutet, dass bei allen neuen Noten ein konti-٠ nuierliches Gleiten ausgeführt wird.
- Legato bedeutet, dass ein kontinuierliches Gleiten nur ٠ dann ausgeführt wird, wenn Noten legato gespielt werden. Stakkato gespielten Noten beginnen mit der exakten Tonhöhe ihrer jeweiligen Note.

71

OSC MIX

Osc 1

Osc 2

fise 3

Der Dual Analog Filter-Bereich

Der Quantum besitzt zwei analoge Tiefpass-Filter mit zusätzlichen Einstellmöglichkeiten (12 dB/24 dB Tiefpass mit Resonanz – normal, gesättigt oder "schmutzig"). Mittel des **Mode**-Parameters können unterschiedliche Filterroutings realsiert werden (z.B. Boost, Twin Peaks, Escaping, Opposition und weitere).

Der Dual Analog Filter-Bereich

Da der Quantum acht analoge Filter besitzt, ist die maximale Polyphonie auf acht Stimmen begrenzt.

- (1) Das Dual-Analog-Filter kann umgangen werden, indem alle **Osc Dest**-Parameter auf den entsprechenden Oszillator-Displayseiten auf *DF100* eingestellt werden. Dadurch erhalten Sie einen vollständigen Stereo-Signalpfad.
- () Weitere Filter-Parameter finden Sie auf der Filter Display-Seite.

Die Filter Panel-Parameter

Cutoff 1 & 2

Bestimmt die Eckfrequenz des Tiefpassfilters. Es werden alle Frequenzen oberhalb dieser Eckfrequenz gedämpft. Sie können zusätzliche Bewegung in den Klang bringen, indem Sie die Cutoff-Frequenz mit einem LFO, der Filter-Hüllkurve oder dem **Keytrack**-Parameter des Filters modulieren. Die Funktionalität dieser Regler hängt von der **Mode**-Einstellung ab.

Resonance 1 & 2

Bestimmt die Anhebung der Frequenzen im Bereich der eingestellten Cutoff-Frequenz. Niedrige Einstellungen machen den Klang brillanter, höhere Werte geben ihm den typischen Filter-Charakter mit starker Anhebung im Be-
reich der Filterfrequenz und Absenkung in den anderen Frequenzbereichen. Bei Maximalstellung des Reglers beginnt die Selbstoszillation des Filters und eine reine Sinusschwingung wird erzeugt. Drehen Sie **Resonance** ganz auf zur Erzeugung von typischen Soloklängen. Auch analog klingende Effekt- und Percussion-Klänge wie Toms, Kicks, Zaps usw. lassen sich damit erzielen. Die Funktionalität dieser Regler hängt von der **Mode**-Einstellung ab.

Туре

Wählt die Filterflankensteilheit für das Tiefpassfilter (LP):

- **12dB** entfernt Frequenzen oberhalb der Cutoff-Frequenz mit einer 12 dB-Flankensteilheit. Das Oszillatorsignal wird zunächst an einen DA-Wandler gesendet, bevor es die Analogfilterschaltung durchlaufen kann. Die notwendige Signalanpassung erfolgt durch einen Soft-Limiter. Dies führt zu einem neutral klingenden Audiosignal.
- **12dB sat. LP** entfernt Frequenzen oberhalb der Cutoff-Frequenz mit einer 12 dB-Flankensteilheit. Das Oszillatorsignal wird zunächst an einen DA-Wandler gesendet, bevor es die Analogfilterschaltung durchlaufen kann. Die notwendige Signalanpassung erfolgt durch eine Sättigungsstufe. Dies führt zu einem leicht angezerrten Audiosignal.

- **12dB dirty LP** entfernt Frequenzen oberhalb der Cutoff-Frequenz mit einer 12 dB-Flankensteilheit. Das Oszillatorsignal wird zunächst an einen DA-Wandler gesendet, bevor es die Analogfilterschaltung durchlaufen kann. Die notwendige Signalanpassung erfolgt durch eine Sättigungsstufe. Dies führt zu einem stark angezerrten Audiosignal.
- **24dB LP** entfernt Frequenzen oberhalb der Cutoff-Frequenz mit einer 24 dB-Flankensteilheit. Das Oszillatorsignal wird zunächst an einen DA-Wandler gesendet, bevor es die Analogfilterschaltung durchlaufen kann. Die notwendige Signalanpassung erfolgt durch einen Soft-Limiter. Dies führt zu einem neutralen Audiosignal.
- **24dB sat. LP** entfernt Frequenzen oberhalb der Cutoff-Frequenz mit einer 24 dB-Flankensteilheit. Das Oszillatorsignal wird zunächst an einen DA-Wandler gesendet, bevor es die Analogfilterschaltung durchlaufen kann. Die notwendige Signalanpassung erfolgt durch eine Sättigungsstufe. Dies führt zu einem leicht angezerrten Audiosignal.
- **24dB dirty LP** entfernt Frequenzen oberhalb der Cutoff-Frequenz mit einer 24 dB-Flankensteilheit. Das Oszillatorsignal wird zunächst an einen DA-Wandler gesendet, bevor es die Analogfilterschaltung durchlaufen kann. Die notwendige Signalanpassung erfolgt

durch eine Sättigungsstufe. Dies führt zu einem stark angezerrten Audiosignal.

Mode

Wechselt zwischen den verfügbaren Filtermodi. Je nach ausgewähltem Modus unterscheiden sich die Parameter **Cutoff** und **Resonance** sowie das Verhalten von Filter 1 und 2. Folgende Modi stehen zur Verfügung:

- Single: Nur Cutoff 1 und Resonance 1 (Filter 1) wirken sich auf die Klangbearbeitung aus. Cutoff 2 und Resonance 2 haben hier keinen Einfluss.
- **Boost**: Nur **Cutoff 1** und **Resonance 1** (Filter 1) wirken sich auf die Klangbearbeitung aus. **Cutoff 2** ist dabei abhängig von den Einstellungen von **Cutoff 1** auf einen automatischen Cutoff-Wert eingestellt. Dies führt zu einem verstärkten Signal. **Resonance 2** hat hier keinen Einfluss.
- **Twin Peaks**: Beide Filter-Cutoff-Werte sind auf einen konstanten Frequenzabstand eingestellt, wobei Cutoff 1 höher als Cutoff 2 ist. **Cutoff 2** und **Resonance 2** haben hier keinen Einfluss.
- **Escaping**: Beide Filter-Cutoff-Werte sind auf einen konstanten Frequenzabstand eingestellt, wobei Cutoff

2 höher als Cutoff 1 ist. **Cutoff 2** und **Resonance 2** haben hier keinen Einfluss.

- **Opposition**: **Cutoff 1** steuert die Frequenz von Filter 1 und 2. Höhere Werte erhöhen Cutoff 1 und verringern Cutoff 2. Niedrigere Werte erhöhen Cutoff 2 und verringern Cutoff 1. **Cutoff 2** und **Resonance 2** haben hier keinen Einfluss.
- **Endless**: Nahezu identisch wie bei **Opposition**, aber die Grenzfrequenz von Filter 2 besitzt ein anderes Verhalten. **Cutoff 2** und **Resonance 2** haben hier keinen Einfluss.
- **Independent**: Beide Filter erlauben unabhängige Einstellungen für **Cutoff 1** und **2** und **Resonance 1** und **2**.
- Linked: Beide Filter erlauben unabhängige Einstellungen für Cutoff 1 und 2 und Resonance 1 und 2, aber Cutoff 1 steuert die grundsätzliche Frequenzausblendung.

Die Filter Display-Seite

Um auf die Filter Display-Seite zugreifen zu können, drücken Sie den FILTERS-Taster oberhalb des Displays.

Mit den Registerkarten im oberen Teil des Displays können Sie die Seiten **Analog Filter 1** und **Analog Filter 2** sowie **Digital Former** und **Routing** aufrufen. Tippen Sie auf die gewünschte Registerkarte, um die entsprechende Seite auszuwählen.

Der **Digital Former** und das **Routing** werden in den nachfolgenden Kapiteln erklärt.

Cutoff (für Analog Filter 1 & 2)

Gleiche Funktionalität wie der entsprechende Panel-Parameter.

Tippen Sie auf **Cutoff 1** oder **Cutoff 2**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Normal**: Die Cutoff-Wertänderung beträgt 1 %.
- Fine: Die Cutoff-Wertänderung beträgt 0.1 %.
- Super Fine: Die Cutoff-Wertänderung beträgt 0.01 %.
- Set Default: Stellt Cutoff auf die Standardeinstellung 100.0 %.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

(!)

Resonance (für Analog Filter 1 & 2)

Gleiche Funktionalität wie der entsprechende Panel-Parameter.

Tippen Sie auf **Resonance 1** oder **Resonance 2**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Normal**: Die Resonance-Wertänderung beträgt 1 %.
- Fine: Die Resonance-Wertänderung beträgt 0.1 %.
- **Super Fine**: Die Resonance-Wertänderung beträgt 0.01 %.
- Set Default: Stellt Resonance auf die Standardeinstellung 0.0 %.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Keytrack (für Analog Filter 1 & 2)

Bestimmt, wie stark die Filterfrequenz von der gespielten Tonhöhe abhängt. Die Referenznote für diesen Parameter ist E3 (Notennummer 64). Bei positiven Werten steigt die Filterfrequenz, wenn Noten oberhalb der Referenznote gespielt werden, bei negativenWerten fällt Sie entsprechend und umgekehrt. Die Einstellung +100% entspricht der 1:1-Skalierung, d.h. wenn Sie auf dem Keyboard eine Oktave spielen, ändert sich die Filterfrequenz um den gleichen Betrag.

bei den meisten Bassklängen sind niedrigere Einstellungen im Bereich *+30%* optimal, um den Klang zu höheren Noten hin weich zu halten.

Tippen Sie auf **Keytrack 1** oder **Keytrack 2**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Keytrack-Wertänderung beträgt 2 %.
- Fine: Die Keytrack-Wertänderung beträgt 0.2 %.
- **Super Fine**: Die Keytrack-Wertänderung beträgt 0.02 %.
- **Set Default**: Stellt Keytrack auf die Standardeinstellung +0.0 %.

- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Level (für beide Analog Filter 1 & 2)

Legt den Ausgangspegel des entsprechenden Filters fest.

Tippen Sie auf **Level**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Level-Wertänderung beträgt 0.6 dB.
- Fine: Die Level-Wertänderung beträgt 0.1 dB.
- Super Fine: Die Level-Wertänderung beträgt 0.01 dB.
- **Set Default**: Stellt Level auf die Standardeinstellung *0 dB.*
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.

• **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Filter Pan (für beide Analog Filter 1 & 2)

Legt das Panorama für das Audiosignal fest, das aus dem analogen Filter kommt.

Tippen Sie auf **Filter Pan**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Filter Pan-Wertänderung beträgt 2% L/R.
- **Fine**: Die Filter Pan-Wertänderung beträgt 1% L/R.
- **Super Fine**: Die Filter Pan-Wertänderung beträgt 0.1% L/R.
- Set Default: Stellt Filter Pan auf die Standardeinstellung *Center*.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.

• **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Type Analog Filter 1& 2

Gleiche Funktionalität wie der entsprechende Panel-Parameter.

Tippen Sie auf **Type**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Set Default: Stellt Type auf die Standardeinstellung *12 dB LP.*
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Mode

Gleiche Funktionalität wie der entsprechende Panel-Parameter.

Tippen Sie auf **Mode**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt Mode auf die Standardeinstellung *Single*.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Routing

Legt das Signalrouting des von den Oszillatoren ankommenden Audiosignals fest.

- Former -> Filter: Das Audiosignal gelangt zuerst in die Digital Former-Sektion und von dort in die Dual-Analog-Filter.
- **Filter -> Former**: Das Audiosignal gelangt zuerst zu den Dual Analog-Filtern und von dort dann in die Digital Former-Sektion.
- **Parallel**: Das Audiosignal wird zu gleichen Teilen in die Digital Former-Sektion sowie in die Dual-Analog-Filter geleitet. Dies ermöglicht eine simultane parallele Bearbeitung.

Tippen Sie auf **Routing**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt Routing auf die Standardeinstellung *Filter -> Former.*
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Stereo Mode

Da der Dual Analog-Filter ein Mono-Ausgangssignal ausgibt, rekonstruiert dieser Parameter dieses Signal und erzeugt daraus ein stereoähnliches Signal.

- **Neutral**: Das Signal, das den Dual Analog-Filter verlässt, wird vom Stereo Mode-Effekt nicht beeinflusst.
- **Medium**: Erzeugt einen leichten Stereoeffekt beim Ausgangssignal.
- **Strong**: Erzeugt einen intensiven Stereoeffekt beim Ausgangssignal.

Tippen Sie auf **Stereo Mode**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

• **Set Default**: Stellt Stere Mode auf die Standardeinstellung *Medium*.

- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Der Digital Former-Bereich

Dieser Bereich bietet zusätzliche digitale Filter und Signalverstärker-Effekte wie Drive und Bit Crusher.

Der Digital Former-Bereich

Beachten Sie, dass der Routing-Parameter festlegt, ob das Audiosignal vor oder nach dem Passieren des Digital Former in die Dual Analog-Filter geleitet wird. Daher ist Routing auch auf im Digital Former sowie auf der Display-Seite des Dual-Analog-Filters verfügbar.

Die Digital Former Panel-Parameter

Туре

Die folgenden Digital Former-Typen sind verfügbar. Abhängig vom ausgewählten Typ regeln **Amount** und **Color**

unterschiedliche Parameter. Dies wird in der nachfolgenden Übersicht erklärt:

- **Bypass**: Es wird kein Effekt verwendet. **Amount** und **Color** haben keinen Einfluss auf das Signal.
- Drive: Fügt dem Signal eine Sättigung hinzu. Amount bestimmt den Grad dieser Sättigung. Bei 0.00 wird das Signal nicht verzerrt, es bleibt also "rein". Höhere Einstellungen addieren zusätzliche Obertöne zum Signal, was sich in einem wärmeren Klangcharakter äußert. Weiteres Erhöhen des Amount-Parameters verstärkt die Verzerrung, was sich besonders für härtere Leadsounds und Effekte eignet. Color (entspricht dem Parameter Model) legt die Art der Verzerrung fest. Folgende Verzerrungsstufen stehen zur Verfügung:
 - **PNP** erzeugt eine Verzerrung basierend auf einem bipolaren Transistor.
 - **Tube** simuliert eine asymmetrische Verzerrung und erinnert an eine Röhrenschaltung.
 - **PickUp** simuliert einen elektromagnetischen Tonabnehmer. Dieser Typ wird bei einer Lautstärkemodulation der beteiligten Signalquellen richtig interessant.
 - **Diode** erzeugt eine typische Dioden-Verzerrung.

- **Crunch** ist ein sinusartiger Waveshaper, mit dem sich FM-ähnliche oder bis zur Unkenntlichkeit verzerrte Klänge erzielen lassen.
- Gain: Bietet eine einstellbare Verstärkungsstufe. Amount (entspricht dem Parameter Gain) erhöht den Pegel des Audiosignals. Mit der Gain Phase (auch via Color) können Sie die Phase des Signals zwischen Normal und Reverse umschalten.
- **Comb + / Comb** : Ein Kammfilter (engl. Comb Filter) ist eigentlich ein sehr kurzes Delay, das in seiner Länge und seiner Rückkopplung (Feedback) verändert werden kann. Die Verzögerungszeit ist so kurz, das man die einzelnen Wiederholungen des Signals nicht wahrnimmt, wohl aber eine Verfärbung des Originalsignals durch Spitzen und Löcher im Frequenzspektrum. Die Frequenz dieser Verfärbung wird durch die Verzögerungszeit eingestellt, hier via **Freq (Amount)**. Die Stärke der Verfärbung wird mittels des Kammfilter-Feedbacks eingestellt, hier über **Feedback (Color)**. Der Quantum bietet zwei Kammfiltertypen (+ und -), die sich in der Form der Peaks unterscheiden.
- Bit Crusher: Dieser Typ erzeugt Lo-Fi-Soundeffekte, indem das Audiosignal dezimiert und abgeschnitten wird. Bits (Amount) bestimmt die Bitauflösung des Audiosignals. Rate (Color) den Betrag, um den die Audio-Samples dezimiert werden. In der niedrigsten Ein-

stellung findet keine Bearbeitung statt. Höhere Einstellungen eliminieren immer mehr Informationen, die das ursprüngliche Audiosignal beschreiben und transformieren es schliesslich in ein nicht mehr erkennbares Rauschen.

- Nave LP 12 / LP 24: Ein Tiefpassfilter mit Resonanz wie im Waldorf Nave-Synthesizer. Dieser Filtertyp wurde aus Kompatibilitätsgründen implementiert, da der Quantum Soundprogramme des Nave laden kann. LP12/24 Freq (Amount) steuert die Filter-Grenzfrequenz, LP12/24 Reso (Color) die Filteresonanz.
- PPG LP 12 / LP 24: Ein Tiefpassfilter mit Resonanz wie im Waldorf PPG Wave 3.V-Synthesizer. LP12/24 Freq (Amount) steuert die Filter-Grenzfrequenz, LP12/24 Reso (Color) die Filteresonanz.
- Largo LP 12 / LP 24: Ein Tiefpassfilter mit Resonanz wie im Waldorf Largo-Synthesizer. LP12/24 Freq (Amount) steuert die Filter-Grenzfrequenz, LP12/24 Reso (Color) die Filteresonanz.
- Nave HP 12 / HP 24: Ein Hochpassfilter mit Resonanz wie im Waldorf Nave-Synthesizer. Dieser Filtertyp wurde aus Kompatibilitätsgründen implementiert, da der Quantum Soundprogramme des Nave laden kann. HP12/24 Freq (Amount) steuert die Filter-

Grenzfrequenz, **HP12/24 Reso (Color)** die Filteresonanz.

- Largo HP 12 / HP 24: Ein Hochpassfilter mit Resonanz wie im Waldorf Largo-Synthesizer. HP12/24 Freq (Amount) steuert die Filter-Grenzfrequenz, HP12/24 Reso (Color) die Filteresonanz.
- Nave BP 12 / BP 24: Ein Bandpassfilter mit Resonanz wie im Waldorf Nave-Synthesizer. Dieser Filtertyp wurde aus Kompatibilitätsgründen implementiert, da der Quantum Soundprogramme des Nave laden kann. BP12/24 Freq (Amount) steuert die Filter-Grenzfrequenz, BP12/24 Reso (Color) die Filteresonanz.
- Largo BP 12 / BP 24: Ein Bandpassfilter mit Resonanz wie im Waldorf Largo-Synthesizer. BP12/24 Freq (Amount) steuert die Filter-Grenzfrequenz, BP12/24 Reso (Color) die Filteresonanz.
- Nave Notch 12 / Notch 24: Ein Bandsperrenfilter mit Resonanz wie im Waldorf Nave-Synthesizer. Dieser Filtertyp wurde aus Kompatibilitätsgründen implementiert, da der Quantum Soundprogramme des Nave laden kann. Notch12/24 Freq (Amount) steuert die Filter-Grenzfrequenz, Notch12/24 Reso (Color) die Filteresonanz.

 Largo Notch 12 / Notch 24: Ein Bandsperrenfilter mit Resonanz wie im Waldorf Largo-Synthesizer. Notch12/24 Freq (Amount) steuert die Filter-Grenzfrequenz, Notch12/24 Reso (Color) die Filteresonanz.

Amount

Abhängig vom ausgewählten **Type** steuert dieser Parameter die Filterfrequenz oder den Verstärkungsgrad. Lesen Sie hierzu die Beschreibung der entsprechenden Typen.

Das Auswahlrad steuert ebenfalls den **Amount**, abhängig vom ausgewählten Typ.

Color

Abhängig vom ausgewählten **Type** steuert dieser Parameter die Resonanz oder den Drivetype. Lesen Sie hierzu die Beschreibung der entsprechenden Typen.

(!) Weitere Digital-Former-Parameter finden Sie auf der Digital Former Display-Seite.

Die Digital Former Display-Seite

Um auf die Digital Former Display-Seite zugreifen zu können, drücken Sie zunächst den FILTERS-Taster oberhalb des Displays. Tippen Sie dann im Touchscreen auf die **Digital Former**-Schaltfläche, um die gewünschte Seite aufzurufen.

Digital Former Display-Seite mit dem Nave LP24 Filtertyp

U Je nach ausgewähltem **Type** kann die Anzeige anders aussehen.

Туре

Lesen Sie hierzu die Beschreibung im Kapitel zu den "Digital Former Panel-Parametern".

Tippen Sie auf **Type**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt Type auf die Standardeinstellung *Bypass.*
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Amount

Lesen Sie hierzu die Beschreibung im Kapitel zu den "Digital Former Panel-Parametern". Je nach ausgewähltem **Type** kann dieser Parameter unterschiedlich benannt sein. Bitte lesen Sie hierzu die Beschreibung bei **Type**.

Tippen Sie auf **Amount**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Amount-Wertänderung ist normal.
- Fine: Die Amount-Wertänderung ist fein.

- **Super Fine**: Die Amount-Wertänderung ist sehr fein.
- Set Default: Stellt Amount auf die Standardeinstellung.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Color

Lesen Sie hierzu die Beschreibung im Kapitel zu den "Digital Former Panel-Parametern". Je nach ausgewähltem **Type** kann dieser Parameter unterschiedlich benannt sein. Bitte lesen Sie hierzu die Beschreibung bei **Type**.

Tippen Sie auf **Color**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Color-Wertänderung ist normal.
- Fine: Die Color-Wertänderung ist fein.
- **Super Fine**: Die Color-Wertänderung ist sehr fein.

- Set Default: Stellt Color auf die Standardeinstellung.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Routing

Legt das Signalrouting des von den Oszillatoren ankommenden Audiosignals fest.

- **Former -> Filter**: Das Audiosignal gelangt zuerst in die Digital Former-Sektion und von dort in die Dual-Analog-Filter.
- **Filter -> Former**: Das Audiosignal gelangt zuerst zu den Dual Analog-Filtern und von dort dann in die Digital Former-Sektion.
- **Parallel**: Das Audiosignal wird zu gleichen Teilen in die Digital Former-Sektion sowie in die Dual-Analog-

Filter geleitet. Dies ermöglicht eine simultane parallele Bearbeitung.

Tippen Sie auf **Routing**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt Routing auf die Standardeinstellung *Filter -> Former.*
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Die Routing Display-Seite

Um auf die Routing Display-Seite zugreifen zu können, drücken Sie zunächst den FILTERS-Taster oberhalb des Displays. Tippen Sie dann im Touchscreen auf die **Routing-**Schaltfläche, um die gewünschte Seite aufzurufen.

Hier erhalten Sie eine grafische Übersicht über den Signalverlauf im Quantum. Sie können hier auch das Routing der drei Oszillatoren und der Ringmodulatoren steuern sowie die Audioausgänge für den aktuellen Sound einstellen.

Die grafische Routing-Übersicht

Im mittleren Bereich des Displays sehen Sie den aktuellen Audiosignalpfad von der Klangerzeugung (Osc 1, 2, 3) über die Dual Analog-Filter (Filt 1 und 2), die Digital Former-Sektion (DF) und den Verstärker (AMP), gefolgt von der Effekt-Sektion (FX 1 bis 5). Das Audiosignal verlässt den Quantum schließlich über den Master-Ausgang und/oder den AUX-Ausgang.

Der Audiosignalpfad ändert sich, wenn einer der folgenden Parameter geändert wird:

- **Osc 1, 2, 3**: Der jeweilige Osc-Block leuchtet in der Farbe des ausgewählten Oszillatormodells, wenn der entsprechende **Osc Mix**-Parameter aufgedreht ist. Ein Osc-Block wird an eine andere Signalposition verschoben, wenn der Parameter **Osc Dest** auf *VCA* gesetzt ist. Ein Osc-Block zeigt ein anderes Routing, wenn der Parameter **Osc Dest** auf eine der *DF-Filter*-Einstellungen gesetzt ist.
- Abhängig von der Einstellung des **Routing**-Parameters ändern die Filter- und DF-Blöcke ihre Position innerhalb der Grafik. Wenn Digital Former **Type** auf *Bypass* eingestellt ist, wird der DF-Block ausgegraut.
- Abhängig von den definierten Audioausgängen führt der FX5-Ausgang zum **Master**, zum **AUX**, zu beiden

Ausgängen oder zu keinen Ausgängen (Sie möchten diese Einstellung sicherlich nicht verwenden, glauben Sie uns).

Osc 1/2/3 Dest

Hier können Sie das Routing des entsprechenden Oszillatorsignals bestimmen. Die folgenden Routing-Optionen sind verfügbar:

- **Main** leitet das Signal in den vollständigen Signalpfad (Dual Analog Filter, Digital Former, VCA), wie mit dem Parameter **Routing** auf der Filter Display-Seite festgelegt.
- VCA leitet das Signal direkt an den VCA, ohne dabei die beiden Filter-Abschnitte zu passieren.
- **DF Fil**-Einstellungen: Bietet verschiedene Einstellungen für die Signalbeziehung zwischen dem Digital Former (**DF**) und dem Dual Analog-Filter (**Fil**). Wenn Sie das Signal beispielsweise zu 30% durch den Digital Former und zu 70% durch das Analog Filter schicken möchten, wählen Sie hier *DF 30 Fil 70*. Das Routing hängt auch von der **Routing**-Einstellung auf Filter Display-Seite ab.

(!) Der Dual-Analog-Filter-Bereich kann umgangen werden, indem alle **Osc Dest**-Parameter auf den entsprechenden Oszillator-Displayseiten auf *DF100* eingestellt werden. Dadurch erhalten Sie einen vollständigen Stereo-Signalpfad.

Tippen Sie auf **Osc 1/2/3 Dest**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt Osc 1/2/3 Dest auf die Standardeinstellung *Main*.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

RingMod 1-->2, 1-->3

Steuert den Pegel der Ringmodulation zwischen Osc 1 und 2 und Osc 1 und 3.

Tippen Sie auf **RingMod**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die RingMod-Wertänderung beträgt 0.4 dB.
- Fine: Die RingMod-Wertänderung beträgt 0.04 dB.

- **Super Fine**: Die RingMod-Wertänderung beträgt 0.004 dB.
- Set Default: Stellt RingMod auf die Standardeinstellung 0 dB.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Send Main

 (\mathbf{I})

Bestimmt, ob das Audiosignal an die Main Out-Buchsen gesendet wird (*On*) oder nicht (*Off*).

Das Ausgangssignal kann auf Wunsch gleichzeitig an beide Ausgänge (Main + Aux) gesendet werden.

Tippen Sie auf **Send Main**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Set Default: Stellt Send Main auf die Standardeinstellung On.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.

• **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Send Aux

Bestimmt, ob das Audiosignal an die Aux Out-Buchsen gesendet wird (*On*) oder nicht (*Off*).

(!) Das Ausgangssignal kann auf Wunsch gleichzeitig an beide Ausgänge (Main + Aux) gesendet werden.

Tippen Sie auf **Send Aux**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Set Default: Stellt Send Aux auf die Standardeinstellung On.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Routing

Legt das Signalrouting des von den Oszillatoren ankommenden Audiosignals fest.

- Former -> Filter: Das Audiosignal gelangt zuerst in die Digital Former-Sektion und von dort in die Dual-Analog-Filter.
- **Filter -> Former**: Das Audiosignal gelangt zuerst zu den Dual Analog-Filtern und von dort dann in die Digital Former-Sektion.
- **Parallel**: Das Audiosignal wird zu gleichen Teilen in die Digital Former-Sektion sowie in die Dual-Analog-Filter geleitet. Dies ermöglicht eine simultane parallele Bearbeitung.

Tippen Sie auf **Routing**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt Routing auf die Standardeinstellung *Filter -> Former.*
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Der Hüllkurven-Bereich (Envelopes)

Der Hüllkurven-Bereich mit den Filter 1+2- und Amp-Hüllkurven

Mit den Hüllkurven (Ennvelopes) des Quantum können Sie Klangparameter über Bereichs- oder zeitgesteuerte Modulationen bearbeiten. Quantum bietet sechs unabhängige programmierbare Hüllkurven für jedes Klangprogramm:

• Zwei Filter-Hüllkurven. Diese Hüllkurven dienen zur Steuerung der Dual-Analog-Filter 1 und 2, können aber auch für andere Modulationen verwendet werden.

- Eine Verstärker-Hüllkurve (Amplifier). Diese Hüllkurve dient zur Steuerung der Lautstärke, kann aber auch für andere Modulationen verwendet werden.
- Drei zusätzliche Hüllkurven (Free). Diese Hüllkurven können beliebig verwendet werden, um zusätzliche Modulationen in jedem Modul vorzunehmen.
- () Nur die Hüllkurven von Filter 1 + 2 und dem verstärker (Amp) können direkt über die Bedienelemente des Panels bearbeitet werden. Alle Hüllkurven sind aber vollständig über die Anzeigeseite **En**velopes zugänglich.

Hüllkurven mit ADSR-Charakteristik sind in den meisten Synthesizern zu finden. Sie besitzen vier Parameter, die ihren Verlauf bestimmen: Attack, Decay, Sustain und Release.

Durch Auslösen einer Note wird eine Hüllkurve gestartet. Sie steigt zunächst innerhalb der mit dem **Attack**-Parameter vorgegebenen Zeit auf ihren Maximalwert an. Danach fällt Sie innerhalb der mit **Decay** eingestellten Zeit auf den **Sustain**-Wert ab. Dort verbleibt sie solange, bis die Keyboard-Taste wieder losgelassen wird. Anschließend sinkt die Hüllkurve innerhalb der **Release**-Zeit wieder auf Null ab.

Die Envelope Panel-Parameter

() Die Panel-Parameter der Filter-Hüllkurve und der Verstärker-Hüllkurve sind nahezu identisch.

Attack

Bestimmt die Einschwingzeit zum Anstieg des Hüllkurvensignals von Null bis zum maximalen Pegel.

Decay

Ist das Maß für die Zeit, die zum Erreichen des **Sustain**-Haltepegels benötigt wird.

Sustain

Definiert den Haltepegel, der bis zum Notenende aktiv ist.

Release

Startet nach dem Loslassen der Keyboardtaste. In dieser Phase klingt die Hüllkurve mit der eingestellten Zeit auf Null ab.

Velocity

Bestimmt den Einfluß der entsprechenden Hüllkurve auf den zugewiesenen Parameter, z.B. der Filterfrequenz (Cutoff), die in Abhängigkeit von der Tastatur-Anschlagstärke agiert. Dieser Parameter arbeitet in gleicher Weise wie **Amount**, mit dem Unterschied, dass er anschlagabhängig ist. Benutzen Sie diese Funktion, um dem gespielten Klang mehr Ausdruck zu verleihen. Wenn Sie die Tasten nur leicht betätigen, wird nur wenig Modulation erzeugt. Wenn Sie sie stärker anschlagen, wird auch die Modulation stärker.

Amount (nicht für Amp Envelope)

Bestimmt den Einfluss der entsprechenden Hüllkurve auf den zugewiesenen Parameter, zum Beispiel der Filterfrequenz (Cutoff). Bei positiven Werten steigt die Modulationsauslenkung der Hüllkurve, bei negativen Werten fällt sie entsprechend.

(!) Der gesamte Betrag, der für die Filtermodulation verwendet wird, berechnet sich aus der Summe der beiden Parameter **Amount** und **Velocity**. Daher sollten Sie sich stets vor Augen halten, wie hoch die Modulation wirklich ist, insbesondere dann, wenn sich zum Beispiel ein Filter nicht wie erwartet verhält. Interessante Effekte lassen sich auch dadurch erzielen, dass Sie einen der beiden Parameter auf einen positiven Wert, den anderen auf einen negativen setzen.

Die Envelopes Display-Seiten

Um auf die Envelopes Display-Seiten zugreifen zu können, drücken Sie den ENV-Taster oberhalb des Displays. Wählen Sie dann durch Betätigen der gewünschten Schaltfläche die entsprechende Hüllkurve aus (**Amp, Filter 1, Filter 2, Free 1** bis **3**).

Alle Hüllkurven besitzen identische Parameter und Einstellmöglichkeiten

Attack, Decay, Sustain, Release

Lesen Sie hierzu auch das Kapitel "Die Envelope Panel-Parameter".

Tippen Sie auf den entsprechenden Parameter, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

• Normal: Die Wertänderung ist normal.

Die Sound-Parameter

- **Fine**: Die Wertänderung ist feiner.
- Super Fine: Die Wertänderung ist sehr fein.
- **Set Default**: Stellt den Wert auf seine Standardeinstellung.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Delay

Verzögert den Beginn der Hüllkurve um die ausgewählten Zeiteinstellung, nachdem eine Notentrigger erfolgt.

Tippen Sie auf **Delay**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Delay-Wertänderung ist normal.
- Fine: Die Delay-Wertänderung ist feiner.

- Super Fine: Die Delay-Wertänderung ist sehr fein.
- **Set Default**: Stellt Delay auf die Standardeinstellung von *0 secs*.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

EnvelopeVar

Erzeugt ein analoges Verhalten, wenn eine Note ausgelöst wird. Je höher die Einstellung, desto stärker unterscheiden sich die Attack- und Decay-Envelope-Phasen von ihren ursprünglich eingestellten Parameterwerten.

Tippen Sie auf **EnvelopeVar**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die EnvelopeVar-Wertänderung beträgt 0.01.
- Fine: Die EnvelopeVar-Wertänderung beträgt 0.001.
- **Super Fine**: Die EnvelopeVar-Wertänderung beträgt 0.0001.
- **Set Default**: Stellt EnvelopeVar auf die Standardeinstellung 0.35.

- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Attack Curve

Legt die Charakteristik der Attack-Kurvenform fest.

- **Exponential (Exp)** schaltet die Attack-Phase auf einen exponentiellen Verlauf.
- **RC** simuliert die analoge Schaltung eines RC-Filters und ermöglicht Attack-Phasen mit konvexem Verlauf.
- Linear (Lin) schaltet die Attack-Phase auf einen linearen Verlauf.

Tippen Sie auf **Attack Curve**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt Release Curve auf die Standardeinstellung *RC*.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.

• **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Decay Curve

Legt die Charakteristik der Decay-Kurvenform fest.

- **Exponential (Exp)** schaltet die Decay-Phase auf einen exponentiellen Verlauf.
- Alternate Exponential (Exp alt) schaltet die Decay-Phase auf einen alternativen exponentiellen Verlauf.
- Linear (Lin) schaltet die Decay-Phase auf einen linearen Verlauf.

Tippen Sie auf **Decay Curve**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt Decay Curve auf die Standardeinstellung *Exp.*
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Release Curve

Legt die Charakteristik der Release-Kurvenform fest.

- **Exponential (Exp)** schaltet die Release-Phase auf einen exponentiellen Verlauf.
- Alternate Exponential (Exp alt) schaltet die Release-Phase auf einen alternativen exponentiellen Verlauf.
- Linear (Lin) schaltet die Release-Phase auf einen linearen Verlauf.

Tippen Sie auf **Release Curve**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt Release Curve auf die Standardeinstellung *Exp.*
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Loop Mode

Stellt eine der beiden verfügbaren Loop-Optionen für die entsprechende Hüllkurve ein:

- **AD Loop** wiederholt die Phase zwischen **Attack** und **Sustain**, solange eine Note gehalten wird und der normale Ausklingprozess beginnt. Sobald die Note losgelassen wird, startet die **Release**-Phase der Hüllkurve.
- **ADSR Loop** ist identisch mit **AD Loop**, sobald jedoch die **Release**-Phase beginnt, läuft der Loop trotzdem weiter.

Tippen Sie auf **Loop Mode**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Set Default: Stellt Loop Mode auf die Standardeinstellung *Off.*
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Single Trigger

Alle Hüllkurven bieten zusätzlich eine Single Trigger-Funktion. Diese arbeitet nur im Mono-Modus, den Sie mit dem **Mono**-Schalter aktivieren können.

- In der Single Trigger-Einstellung *Off* wird bei jedem Anschlag die Hüllkurve für jede Stimme neu getriggert, auch beim Legatospiel.
- In der Single Trigger-Einstellung *On* verhalten sich die Hüllkurven aller Stimmen eines Patches wie eine einzige. Das eigent sich perfekt für ein Legatospiel. Diese gemeinsame Hüllkurve startet, sobald die erste Note gespielt wird, ihre Haltephase dauert bis zum Loslassen der letzten Taste. Danach erfolgt die Release-Phase.

Tippen Sie auf **Single Trig**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Set Default: Stellt Single Trigger auf die Standardeinstellung *Off.*
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Die Mod Targets-Schaltfläche

Lesen Sie mehr hierzu im Kapitel zur Modulation.

Der LFO-Bereich

Neben den klangerzeugenden Oszillatoren gibt es im Quantum zu Modulationszwecken sechs Niederfrequenz-Oszillatoren, kurz LFO (Low Frequency Oscillator) genannt. Jeder LFO erzeugt eine periodische Wellenform mit einstellbarer Frequenz und Wellenform.

Der LFO-Bereich für LFO 1

- ① Die grundlegenden Parameter von LFO1, LFO2 und LFO3 können direkt über die Panel-Parametersteuerelemente bearbeitet werden. LFO 4 bis 6 sind vollständig über die LFO-Anzeigeseite zugänglich.
- Tippen Sie im Touchscreen auf die entsprechende LFO-Wellenform, um die Parameter Speed und Warp zu ändern.

Die LFO 1 – 3 Panel-Parameter

Shape

Wählt die Wellenform des entsprechenden LFO aus:

- Die *Sine (Sinus)*-Wellenform eignet sich am besten für Wave- oder Panoramamodulationen.
- Die *Triangle (Dreieck)*-Wellenform ist ideal für leichte Tonhöhen-, Filter- oder Lautstärkemodulationen.
- Die *Square (Rechteck)*-Wellenform klingt interessant bei harten Panoramaänderungen oder Spezialeffekten.
- Die *Saw down (absteigender Sägezahn)*-Wellenform kann interessante Filter- oder Lautstärkeverläufe erzeugen.
- Die *Saw up (aufsteigender Sägezahn)*-Wellenform kann interessante Filter- oder Lautstärkeverläufe erzeugen.
- *S&H* (*Sample & Hold*) ermittelt einen Zufallswert und hält diesen bis zur nächsten LFO-Periode. Besitzt **Speed** den Wert *0*, so wird bei jeder neu eingehenden Note ein Zufallswert erzeugt.

Speed

Bestimmt die Frequenz des entsprechenden LFO. Bei kleinen Werten benötigt der LFO einige Minuten, um einen kompletten Durchlauf zu erzeugen, während hohe Werte den LFO bis in den hörbaren Bereich schwingen lassen.

Wenn LFO **Sync** aktiviert ist, können Sie **Speed** in musikalischen Werten einstellen. Der größmögliche Wert ist *1024*, wobei ein LFO-Durchlauf dann volle 1024 Takte benötigt.

Amount

Bestimmt den Einfluss der entsprechenden LFO-Modulation auf den zugewiesenen Parameter. Da es sich bei der Modulation tatsächlich um eine Multiplikation des Quellensignals und dieses Parameters handelt, hängt die resultierende Amplitude von der Art der von Ihnen ausgewählten Modulationsquelle ab.

Die LFO Display-Seiten

Um auf die LFO Display-Seiten zugreifen zu können, drükken Sie den LFO-Taster oberhalb des Displays. Wählen Sie dann durch Betätigen der gewünschten Schaltfläche den entsprechenden LFO (**LFO 1** bis **6**).

(!) Alle LFOs besitzen identische Parameter und Einstellmöglichkeiten.

Shape

Lesen Sie hierzu das Kapitel "Die LFO 1 - 3 Panel-Parameter".

Tippen Sie auf **Shape**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt Shape auf die Standardeinstellung *Sine*.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Speed / Speed Ratio

Lesen Sie hierzu das Kapitel "Die LFO 1 - 3 Panel-Parameter".

Tippen Sie auf **Speed**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Speed-Wertänderung beträgt 2.8 Hz.
- Fine: Die Speed-Wertänderung beträgt 0.28 Hz.

- **Super Fine**: Die Speed-Wertänderung beträgt 0.028 Hz.
- **Set Default**: Stellt Speed auf die Standardeinstellung 6.25 Hz.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Warp

Abhängig von der ausgewählten LFO-Wellenform (**Shape**) faltet der **Warp**-Parameter diese entsprechende Wellenform. Nachfolgend die Ergebnisse für die unterschiedlichen LFO-Wellenformen:

• Wenn *Sine* ausgewählt ist, komprimieren positive oder negative Werte die obere oder untere Phase der Wellenform.

- Wenn *Triangle* ausgewählt ist, transformieren höhere Werte die Wellenform in eine aufsteigende Sägezahnwelle, während niedrigere Werte eine abfallende Sägezahnwelle erzeugen.
- Wenn *Square* ausgewählt ist, ändert Warp die Pulsbreite der Wellenform.
- Wenn *Saw (Down* oder *Up)* ausgewählt ist, wird die Wellenform gefaltet. Einstellungen kleiner als 0.00% verändern auch die LFO-Phase von bipolar zu unipolar.
- Wenn *S&H (Sample & Hold)* ausgewählt ist, formt Warp die Kanten der gehaltenen Wellenform und glättet diese.

Tippen Sie auf **Warp**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Normal**: Die Warp-Wertänderung beträgt 2.0 %.
- **Fine**: Die Warp-Wertänderung beträgt 0.2 %.
- **Super Fine**: Die Warp-Wertänderung beträgt 0.02 %.
- **Set Default**: Stellt Warp auf die Standardeinstellung +0.0%.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.

• **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

All Amounts

Lesen Sie hierzu das Kapitel "Die LFO 1 - 3 Panel-Parameter".

Tippen Sie auf **All Amounts**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die All Amounts-Wertänderung beträgt 2.0 %.
- Fine: Die All Amounts-Wertänderung beträgt 0.2 %.
- **Super Fine**: Die All Amounts-Wertänderung beträgt 0.02 %.

Attack

Steuert die Geschwindigkeit, mit der der LFO eingeblendet wird. Mit diesem Parameter können Sie langsam ansteigende Modulationen erstellen, die zum Beispiel Tonhöhenoder Lautstärkeverläufe interessanter gestalten.

Tippen Sie auf **Attack**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

• Normal: Die Attack-Wertänderung erfolgt normal.

- Fine: Die Attack-Wertänderung erfolgt fein.
- Super Fine: Die Attack-Wertänderung erfolgt sehr fein.
- **Set Default**: Stellt Attack auf die Standardeinstellung *0 secs.*
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Decay

Steuert die Geschwindigkeit, mit der der LFO ausgeblendet wird. Mit diesem Parameter können Sie langsam ausklingende Modulationen erstellen, die zum Beispiel Tonhöhenoder Lautstärkeverläufe interessanter gestalten.

Tippen Sie auf **Decay**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Decay-Wertänderung erfolgt normal.
- Fine: Die Decay-Wertänderung erfolgt fein.
- Super Fine: Die Decay-Wertänderung erfolgt sehr fein.

- Set Default: Stellt Decay auf die Standardeinstellung *Off.*
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Sync

Wenn **Sync** aktiviert ist, wird der entsprechende LFO zum globalen Tempo des Quantum synchronisiert (das kann mit dem **Bpm**-Parameter eingestellt werden). Die Geschwindigkeitseinstellung (hier als **Speed Ratio** bezeichnet) kann dann geändert werden, um musikalisch sinnvolle Werte zu erhalten.

Tippen Sie auf **Sync**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Set Default: Stellt Sync auf die Standardeinstellung Off.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Mode

In der Einstellung *Global* werden die LFO-Phasen aller Stimmen so synchronisiert, dass sie wie ein LFO klingen. Dies kann interessant sein, wenn der LFO zur Modulation der Filterfrequenz (Cutoff) angewendet wird. Bei *Poly* löst jede gespielte Note einen eigenen LFO aus.

Tippen Sie auf **Mode**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt Mode auf die Standardeinstellung *Poly.*
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Slew

Bestimmt die Anstiegsgeschwindigkeit der ausgewählten LFO-Wellenform. Je höher der Einstellungswert, desto gleichmäßiger die Slew-Rate. Höhere Einstellungen ändern auch die Phase von einer bipolaren LFO-Wellenform zu nahezu unipolar. Tippen Sie auf **Slew**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Set Default: Stellt Skew auf die Standardeinstellung 40.0%
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Phase

Diese Funktion bestimmt die Startphase des LFOs, wenn eine neue Note ausgelöst wird. *Free* bedeutet, dass der LFO nicht mit jeder Note neu gestartet wird, sondern vollkommen frei läuft, während die anderen Werte die LFO-Startphase auf den entsprechenden Wert in Grad setzen.

Tippen Sie auf **Phase**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Set Default: Stellt Phase auf die Standardeinstellung 0.0 deg.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.

• **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Delay

Bestimmt die Geschwindigkeit in Sekunden, mit der der entsprechende LFO eingeblendet wird. Mit diesem Parameter können Sie langsam ansteigende Modulationen erzeugen, die sich vor allem zur Änderung von Waves in einer Wavetable, Tonhöhe oder Lautstärke eignen.

Tippen Sie auf **Delay**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt Delay auf die Standardeinstellung *0 secs.*
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Die Mod Targets-Schaltfläche

Lesen Sie mehr hierzu im Kapitel zur Modulation.

Der Komplex Modulator-Bereich

Der Komplex Modulator ist ein komplexer LFO mit zwei verschiedenen Kurven, die auf Wunsch miteinander gemischt werden können. Das Ausgangssignal dieses Bereichs kann als Modulationsquelle verwendet werden, um Morphing-Atmosphären, Drones und sich ständig ändernde Sounds zu erzeugen.

Der Komplex Modulator-Bereich

() Um das Ergebnis des Komplex Modulators zu hören und zu verstehen, sollten Sie ihn als Modulationsquelle für einen Parameter wie Tonhöhe (Pitch), Filtereckfrequenz (Cutoff) oder einen beliebigen anderen Parameter definieren.

Die Komplex Modulator Panel-Parameter

Speed

Bestimmt die Frequenz des Komplex Modulators. Bei kleinen Werten benötigt ein kompletter Durchlauf einige Minuten, während hohe Werte den Modulator bis in den hörbaren Bereich schwingen lassen.

Wenn Komplex Modulator **Sync** aktiviert ist, können Sie **Speed** in musikalischen Werten einstellen. Der größmögliche Wert ist *1024*, wobei ein Durchlauf dann volle 1024 Takte benötigt.

Blend

Mischt das Ergebnis von **Curve A** und **Curve B**. Bei der ganz linken Einstellung (*A 100%*) wird nur das Signal von **Curve A** als Modulationsquelle verwendet, während bei der Einstellung ganz rechts (*B 100%*) nur **Curve B** verwendet wird. Andere Einstellungen transformieren **Curve A** in **Curve B** und umgekehrt.

Warp

Abhängig von der Komplex Modulator-Wellenform faltet der **Warp**-Parameter diese. Das Ergebnis kann je nach Ausgangssignal anders aussehen.

Amount

Bestimmt den Einfluss der Komplex Modulator-Modulation auf den zugewiesenen Parameter. Da es sich bei der Modulation tatsächlich um eine Multiplikation des Quellensignals und dieses Parameters handelt, hängt die resultierende Amplitude von der Art der von Ihnen ausgewählten Modulationsquelle ab.

Envelope

Steuert die Geschwindigkeit, mit der der Komplex Modulator ein- und ausgeblendet wird. Mit diesem Parameter können Sie langsam ansteigende und abfallende Modulationen erzeugen, die zum Beispiel Tonhöhen- oder Lautstärkeverläufe interessanter gestalten.

Entropy

Bestimmt, wie intensiv ein Zufallsrauschsignal die Zeitachse beeinflusst. Je höher der Entropie-Wert, desto zufälliger scheint die komplette Wellenform bei allen Zyklen zu sein. Die grafische Anzeige der Wellenform gibt eine Vorstellung davon, was genau passiert. Ansonsten ist das Ergebnis alles andere als exakt.

(!) Weitere Parameter des Komplex Modulator finden sich auf der entsprechenden Display-Seite.

Die Komplex Modulator Display-Seite

Um auf die Komplex Modulator-Display-Seite zugreifen zu können, drücken Sie den MOD-Taster oberhalb des Displays zweimal. Ist der Mod-Modus bereits aktiv, wählen Sie den Komplex Modulator durch Betätigen der entsprechenden Schaltfläche.

Die Komplex-Registerkarte

Hier finden Sie grundsätzliche Parameter, die für das gesamte Komplex Modulator-Signal verwendet werden.

Blend

Lesen Sie hierzu das Kapitel "Die Komplex Modulator Panel-Parameter".

Tippen Sie auf **Blend**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Blend-Wertänderung beträgt 1%.
- Fine: Die Blend-Wertänderung beträgt 0.1%.
- Super Fine: Die Blend-Wertänderung beträgt 0.01%.

- **Set Default**: Stellt Blend auf die Standardeinstellung *A 100%*.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Speed

Lesen Sie hierzu das Kapitel "Die Komplex Modulator Panel-Parameter".

Tippen Sie auf **Speed**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Speed-Wertänderung beträgt 0.01.
- Fine: Die Speed-Wertänderung beträgt 0.001.
- Super Fine: Die Speed-Wertänderung beträgt 0.0001.
- **Set Default**: Stellt Speed auf die Standardeinstellung 0.50.

- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Warp

Lesen Sie hierzu das Kapitel "Die Komplex Modulator Panel-Parameter".

Tippen Sie auf **Warp**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Warp-Wertänderung beträgt 0.02.
- Fine: Die Warp-Wertänderung beträgt 0.002.
- Super Fine: Die Warp-Wertänderung beträgt 0.0002.
- **Set Default**: Stellt Warp auf die Standardeinstellung +0.0%.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.

- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

All Amounts

Lesen Sie hierzu das Kapitel "Die Komplex Modulator Panel-Parameter".

Tippen Sie auf **All Amounts**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die All Amounts-Wertänderung beträgt 2.0 %.
- Fine: Die All Amounts-Wertänderung beträgt 0.2 %.
- **Super Fine**: Die All Amounts-Wertänderung beträgt 0.02 %.

Envelope

Lesen Sie hierzu das Kapitel "Die Komplex Modulator Panel-Parameter".

Tippen Sie auf **Envelope**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Envelope-Wertänderung beträgt 0.01.
- **Fine**: Die Envelope-Wertänderung beträgt 0.001.
- **Super Fine**: Die Envelope-Wertänderung beträgt 0.0001.
- **Set Default**: Stellt Envelope auf die Standardeinstellung 0.00.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Entropy

Lesen Sie hierzu das Kapitel "Die Komplex Modulator Panel-Parameter".

Tippen Sie auf **Entropy**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Entropy-Wertänderung beträgt 0.1.
- Fine: Die Entropy-Wertänderung beträgt 0.01.

- Super Fine: Die Entropy-Wertänderung beträgt 0.001.
- **Set Default**: Stellt Entropy auf die Standardeinstellung *0.00*.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Sync

Wenn **Sync** aktiviert ist, wird der Komplex Modulator zum globalen Tempo des Quantum synchronisiert (das kann mit dem **Bpm**-Parameter auf den **Arpeggiator** oder **Sequenzer**-Seiten eingestellt werden). Die Geschwindigkeitseinstellung (hier als **Speed** bezeichnet) kann dann in musikalischen Werte eingestellt werden.

Tippen Sie auf **Sync**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

• Set Default: Stellt Sync auf die Standardeinstellung Off.

- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Mode

In der Einstellung *Global* werden die Komplex Modulator-Phasen aller Stimmen so synchronisiert, dass sie wie ein Komplex Modulator klingen. Dies kann interessant sein, wenn der Komplex Modulator zur Modulation der Filterfrequenz (Cutoff) angewendet wird. Bei *Poly* löst jede gespielte Note einen eigenen Komplex Modulator aus. In der Einstellung *Envelope* fungiert der Komplex Modulator als freilaufende Hüllkurve. In diesem Modus ändert sich die grafische Darstellung in ein einzelne Hüllkurve, basierend auf den Einstellungen für **Curve A** und **B**.

Tippen Sie auf **Mode**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt Mode auf die Standardeinstellung *Poly.*
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.

• **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Slew

Bestimmt die Anstiegsgeschwindigkeit der Komplex Modulator-Wellenform. Je höher der Einstellungswert, desto gleichmäßiger die Slew-Rate. Höhere Einstellungen ändern auch die Phase von einer bipolaren Komplex Modulator-Wellenform in nahezu unipolar.

Tippen Sie auf **Slew**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Set Default: Stellt Slew auf die Standardeinstellung 0.40.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Phase

Diese Funktion bestimmt die Startphase der Komplex Modulator-Weellenform, wenn eine neue Note ausgelöst wird. *Free* bedeutet, dass der Komplex Modulator nicht mit jeder Note neu gestartet wird, sondern vollkommen frei läuft, während die anderen Werte die Komplex Modulator-Startphase auf den entsprechenden Wert in Grad setzen.

Tippen Sie auf **Phase**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Set Default: Stellt Phase auf die Standardeinstellung 0.0.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Delay

Bestimmt die Geschwindigkeit in Sekunden, mit der der Komplex Modulator eingeblendet wird. Mit diesem Parameter können Sie langsam ansteigende Modulationen erzeugen, die sich vor allem zur Änderung von Waves in einer Wavetable, Tonhöhe oder Lautstärke eignen.

Tippen Sie auf **Delay**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt Delay auf die Standardeinstellung *0 secs.*
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Die Mod Tgts (Modulation Targets)-Schaltfläche

Lesen Sie mehr hierzu im Kapitel zur Modulation.

Die Presets-Schaltfläche

Tippen Sie auf die **Presets**-Schaltfläche, um ein Aufklapp-Fenster zum Laden, Speichern und Verwalten von Komplex Modulator-Einstellungen zu öffnen. Die Erklärung zu allen Optionen finden Sie im **Presets**-Kapitel des Wavetable-Oszillators.

Curve A & B

Hier können Sie die beiden Kurvenformen A (Curve A) und B (Curve B) bearbeiten. Tippen Sie auf die Schaltfläche **Curve A** oder **Curve B**, um die entsprechende Bearbeitungsseite zu öffnen.

Curve A und **B** besitzen identische Bearbeitungsparameter.

Kurvenformen editieren in der Kurvengrafik

Um eine Kurve in der grafisch zu bearbeiten, führen Sie folgende Schritte aus:

• Tippen Sie auf den entsprechenden Schritt (Step) und bewegen Sie Ihren Finger nach oben oder unten, um dessen Pegel zu ändern. Der ausgewählte Schritt leuchtet rot.

- Sie können auch einen Step halten und Ihren Finger nach links oder rechts bewegen, um den Pegel der Schritte in einem Zug zu zeichnen.
- Wenn Sie ober- oder unterhalb eines Schritts doppelt tippen, springt der Pegel sofort zu dieser Position.
- Für eine exaktere Bearbeitung der Schritte empfehlen wir die Verwendung der entsprechenden Displayseiten-Parameter.

Step A/B

Wählt den gewünschten Schritt (Step) zur weiteren Bearbeitung aus. Der aktuell ausgewählte Schritt leuchtet rot.

Num Steps A/B

Bestimmt die Anzahl der verfügbaren Schritte. Hier können Sie Schrittnummern von mindestens zwei bis maximal 32 einstellen.

Tippen Sie auf **Num Steps A** oder **B**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

• **Set Default**: Stellt Num Steps A oder B auf die Standardeinstellung *8.*

- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Level A/B

Stellt den Pegel des ausgewählten Schritts ein.

Tippen Sie auf **Level A/B**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Normal**: Die Level-Wertänderung beträgt 2%.
- Fine: Die Level-Wertänderung beträgt 0.2%.
- **Super Fine**: Die Level-Wertänderung beträgt 0.02%.
- Set Default: Stellt Level auf die Standardeinstellung.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

All Amounts

Lesen Sie hierzu das Kapitel "Die LFO 1 - 3 Panel- Parameter".

Tippen Sie auf **All Amounts**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die All Amounts-Wertänderung beträgt 2.0 %.
- Fine: Die All Amounts-Wertänderung beträgt 0.2 %.
- **Super Fine**: Die All Amounts-Wertänderung beträgt 0.02 %.

Curve Type A/B

Wählt die Kurvenverlaufsart aus, der für den ausgewählten Schritt verwendet wird. Folgende Kurvenverlaufsarten stehen zur Verfügung:

- Lin: Benutzt eine linearen Kurvenverlauf.
- **Step**: Nutzt einen Schritt, der direkt zum Pegel der nächsten Stufe wechselt.
- Cos: Benutzt einen Cosinus-Kurvenverlauf.
- **Saw**: Verwendet eine sägezahnähnliche Kurve, die zum nächsten Schritt hin steigt oder fällt. Dies hängt vom Pegel des Schritts ab.

• **Curve**: Verwendet eine Kurvencharakteristik, die mit dem **Curve Val**-Parameter definiert wird.

Tippen Sie auf **Curve Type**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt Curve Type auf die Standardeinstellung *Lin*.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Curve Val A/B

Wenn der **Curve Type** auf *Curve* eingestellt ist, können Sie mit diesem Parameter die Kurve von exponentiell zu linear und zu exponentiell invertiert überblenden.

Tippen Sie auf **Curve Val**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Curve Val-Wertänderung beträgt 0.01.
- Fine: Die Curve Val-Wertänderung beträgt 0.001.
- **Super Fine**: Die Curve Val-Wertänderung beträgt t 0.0001.

- **Set Default**: Stellt Curve Val auf die Standardeinstellung 0.50.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Die Edit-Schaltfläche

Tippen Sie auf die **Edit**-Schaltfläche, um ein Aufklapp-Fenster mit zusätzlichen Optionen zum Bearbeiten von **Curve A** oder **B** zu öffnen. Diese Optionen wirken sich nicht auf die Anzahl der Schritte aus.

- **Clear**: Löscht alle Schritte und setzt deren Pegel auf *0*.
- All Steps: Setzt alle Schritte auf den Kurventyp Step.
- All Lin: Setzt alle Schritte auf den Kurventyp Lin.
- All Saw: Setzt alle Schritte auf den Kurventyp Saw.
- All Cos: Setzt alle Schritte auf den Kurventyp Cos.
- All Curve: Setzt alle Schritte auf den Kurventyp Curve.

Der Effekte-Bereich (Effects)

Der Quantum bietet fünf Effekteinheiten mit einer Reihe verschiedener Effekttypen an. Jeweils zwei grundlegende Parameter der ersten drei Effekteinheiten können direkt über die Panel-Parameter gesteuert werden, während die Effekt-Anzeigeseite eine weitergehende Bearbeitung ermöglicht.

Der Effekte-Bereich für die Effekte 1, 2 und 3

(!) Beachten Sie, dass die fünf Effekteinheiten Insert-Effekte mit seriellem Routing bieten. Das bedeutet, dass das Signal zuerst durch Effekt 1, dann durch Effekt 2 und so weiter geleitet wird.

Die Effects Panel-Parameter (für Effect 1 bis 3)

Je nach ausgewähltem Effekttyp bedienen die beide Drehregler unterschiedliche Parameter.

Amount für Effekt 1, 2 und 3

In den meisten Fällen steuert dieser Parameter den Dry/Wet-Mix für den ausgewählten Effekttyp:

- Beim Phaser, Chorus, Flanger, Delay, EQ und Drive regelt Amount den Dry/Wet-Pegel des Signals.
- Beim **Reverb-**Effekt regelt **Amount** den **Gain** des Reverbs.
- Beim Compressor regelt Amount den Threshold.

Control für Effekt 1, 2 und 3

Steuert einen Basisparameter des ausgewählten Effekts:

- Wenn **Phaser** ausgewählt ist, bestimmt **Control** die **Speed** (Geschwindigkeit) des Phaser-Effekts.
- Wenn **Chorus** ausgewählt ist, bestimmt **Control** die **Depth** (Intensität) des Chorus-Effekts.
- Wenn **Delay** ausgewählt ist, bestimmt **Control** das **Feedback** des Delay-Effekts.

- Wenn **Reverb** ausgewählt ist, bestimmt **Control** die **Time** (Nachhallzeit) des Reverbs-Effekts.
- Wenn der **EQ** ausgewählt ist, bestimmt **Control** das **Frequency Shifting** der Equalizer-Frequenzen.
- Wenn **Drive** ausgewählt ist, bestimmt **Control** den **Amount** (Intensitätspegel) des gewählten Drive-Typen.
- Wenn **Compressor** ausgewählt ist, bestimmt **Control** die **Ratio** der Kompression.

Die Effects Display-Seite

Um auf die Effekt Display-Seite zugreifen zu können, drükken Sie den EFFECTS-Taster oberhalb des Displays. Wählen Sie dann durch Betätigen der gewünschten Schaltfläche den entsprechenden Effekteinheit (**Effect 1** bis **5**).

- (!) Die grundsätzliche Bearbeitung der fünf Effekteinheiten ist nahezu indentisch. Je nach ausgewähltem Effekttyp werden unterschiedliche Effektparameter bereitgestellt.
- (!) Hinweis: Die meisten Effektparameter können von jeder angebotenen Modulationsquelle moduliert werden.

So wählen Sie einen Effekt aus

- 1) Tippen Sie auf den gewünschte Effekt-Reiter (Effect 1 bis 5).
- 2) Tippen Sie dann auf das Effekt-Aufklappmenü unterhalb des Effekt-Reiters. Hinweis: Sie können Schritt 1 überspringen, da beim Öffnen eines Effekt-Aufklapp-Menüs automatisch zur entsprechenden Effekt-Einheit gesprungen wird.
- 3) Wählen Sie den gewünschten Effekt aus der Liste aus.
- 4) Alle Effekttypen können nur einmal verwendet werden. Das bedeutet, wenn Sie das Delay bereits für Effect 2 eingerichtet haben und Sie dann das Delay für Effect 4 auswählen, wird Effect 2 automatisch auf Off geschaltet. Alle Parameteränderungen des Delays werden aber übernommen. Auf diese Weise können Sie die Effekte in ihrer Reihenfolge anders anordnen.
- 5) Nachdem ein Effekt geladen wurde, kann er mit den Parametern auf seiner Display-Seite bearbeitet werden.

Gemeinsame Effekt-Parameter

Jeder Effekttyp bietet die Schaltflächen **Active** und **Presets**. Tippen Sie einfach darauf, um die entsprechende Funktion zu aktivieren:

- Durch Antippen von **Active** wird die entsprechende Effekteinheit auf Bypass gesetzt. Es wird dann kein Effektsignal erzeugt. Tippen Sie auf **Bypass**, um den Effekt wieder zu aktivieren.
- Tippen Sie auf **Presets**, um ein Aufklapp-Menü zu öffnen. Hier können Sie Effektpresets für den entsprechenden Effekttyp laden, speichern und verwalten. Es stehen folgende Optionen zur Verfügung:
 - Auf der linken Seite finden Sie eine Liste aller Presets für den entsprechenden Effekttyp. Tippen Sie auf den gewünschten Namen, um ein Preset auszuwählen und sofort zu laden. Die aktuellen Einstellungen des Effekts werden dabei überschrieben.
 - Mit **Save** lassen sich die aktuellen Effekt-Einstellungen speichern. Sie können hier auch einen gewünschten Namen für das Preset eingeben.
 - **Import** importiert ein Effekt-Preset von einer angeschlossenen SD-Karte in den Flash- Speicher des Quantum. Das importierte Preset wird dann der Effekt-Presetliste hinzugefügt-

- **Export** exportiert das aktuell ausgewählten Effekt-Preset auf eine angeschlossene SD-Karte.
- **Delete** löscht das aktuell ausgewählte Effekt-Preset nach einer Sicherheitsabfrage.
- Init initialisiert den aktuell ausgewählten Effekt auf seine Standardeinstellungen.
- **Close** schließt das Aufklapp-Fenster. Hierbei findet keine weitere Aktion statt.

Die Effekttypen im Quantum

Phaser

Der Phaser ist ein psychodelisch anmutender Effekt, der in den 1960er und 1970er Jahren populär wurde. Der Effekt fügt dem Klang Bewegung und einen wirbelnden Charakter hinzu. Das eingehende Signal wird aufgeteilt, die Phase einer Seite geändert und dann mit dem unbeeinflussten Signal wieder kombiniert. Dies erzeugt einen durch das Frequenzspektrum wandernden Kammfiltereffekt, wodurch der typische Phasenverschiebungseffekt erzeugt wird. Dieser Durchlauf entsteht, wenn die Phase des Signalanteils durch einen Oszillator moduliert wird, dessen Frequenz mit dem Speed-Regler eingestellt wird. Der Intensitäts-Regler (Depth) legt die Amplitude für die Filterwirkung fest, während die Rückkopplung (Feedback) bestimmte Oberwellen verstärkt.

	Effect 1	Effect 2	Effe	ct 3	Effect 4		Effect 5	
Dry/Wet	Phaser	Delay	Flar	nger	EQ		Off	Center
50.0 % Normal Mod	Active						Presets	50.0 % Normal
Speed								Spread
1.0/ 11-								70.0.%
Normal Mod								Normal Mod
Depth								Feedback
0.30	180.0 deg	Triang	jle		8		Nave	+20.0 %
Normal Mod	Phase Diff	Shap	e	S	tages		Model	Normal Mod
0000 The Quantum Manual								

(!) Für einen typischen Phaser-Effektsound sollten Sie den **Dry/Wet**-Parameter auf 50% stellen.

Dry/Wet

Bestimmt das Lautstärkeverhältnis zwischen dem Original- und dem Effektsignal. Bei einer Einstellung von 0% (Dry) wird das Signal direkt zum Audio-Ausgang geleitet, so dass kein Effekt hörbar ist. Höhere Werte blenden das Effektsignal ein. Bei der Einstellung 100% (Wet) erscheint nur das reine Effektsignal am Audio-Ausgang.

Speed

Bestimmt die LFO-Geschwindigkeit des Phaser-Effektes.

Depth

Bestimmt die Modulationstiefe des Phaser-Effektes.

Center

Regelt den Phasenversatz des Modulations-Oszillators zwischen linkem und rechtem Kanal zur Erzeugung eines breiteren Stereobildes.

Spread

Regelt die Phasenlage des Phaser-Signals. Niedrigere Einstellungen erzeugen einen stärker resonierenden Phaser-Effekt.

Feedback

Bestimmt die Stärke des Rückkopplungssignals.

Phase Diff

Bestimmt die Startphase der Modulationswellenform in Grad (Degree).

Shape

Bestimmt die LFO-Wellenform, die für die Phaser-Modulation verwendet wird. Sie können zwischen einer Sinus (*Sine*)- und einer Dreieckswellenform (*Triangle*) wählen.

Stages

Bestimmt die Anzahl der sogenannten Stages die für den Phaser-Effekt verwendet werden. Der Phaser bietet fünf Phaser-Typen mit zwei, vier, acht, 12 oder 16 unabhängigen Verzögerungsleitungen (Delaylines), von denen die Hälfte zum linken Ein- und Ausgang und die anderen zum rechten Ein- und Ausgang geleitet werden.

Model

Bestimmt das verwendete Phaser-Modell. Sie können zwischen dem Phaser des Waldorf *Nave* und des Waldorf *PPG Wave 3.V* wählen.

Tippen Sie auf den entsprechenden Effekt-Parameter, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen (nicht alle Optionen sind für einige Parameter verfügbar):

- Normal: Die Wertänderung beträgt 1%.
- **Fine**: Die Wertänderung beträgt 0.1%.
- **Super Fine**: Die Wertänderung beträgt 0.01%.
- **Set Default**: Stellt den Parameter auf seine Standardeinstellung.

- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Chorus

Ein Chorus-Effekt entsteht bei der Verwendung von Kammfiltern, die leicht verstimmte Doppelungen des Eingangssignals erzeugen und diese dem Ausgangssignal wieder hinzumischen. Das Ergebnis klingt wie ein Gemisch aus mehreren Klängen, ähnlich einem Chor im Verhältnis zu einer Einzelstimme. Deswegen auch die Bezeichnung Chorus. Die Verstimmung erzeugt ein interner LFO, der in Geschwindigkeit und Stärke eingestellt werden kann.

(!) Für einen typischen Chorus-Effektsound sollten Sie den **Dry/Wet**-Parameter auf 50% stellen.

Dry/Wet

Bestimmt das Lautstärkeverhältnis zwischen dem Original- und dem Effektsignal. Bei einer Einstellung von *0%* (Dry) wird das Signal direkt zum Audio-Ausgang geleitet, so dass kein Effekt hörbar ist. Höhere Werte blenden das Effektsignal ein. Bei der Einstellung *100%* (Wet) erscheint nur das reine Effektsignal am Audio-Ausgang.

Depth

Bestimmt die Modulationstiefe des Chorus-Effektes.

Speed

Bestimmt die LFO-Geschwindigkeit des Chorus-Effektes.

Delay

Bestimmt eine Verzögerung für das Chorus-Signal in Millisekunden.

Feedback

Steuert den Rückkopplungsbetrag des Signals.

Spread

Regelt die Phasenlage des Chorus-Signals. Niedrigere Einstellungen erzeugen einen stärker resonierenden Chorus-Effekt.

Shape

Bestimmt die LFO-Wellenform, die für die Chorus-Modulation verwendet wird. Sie können zwischen einer Sinus (*Sine*)- und einer Dreieckswellenform (*Triangle*) wählen.

Stages

Bestimmt die Anzahl der sogenannten Stages die für den Chorus-Effekt verwendet werden. Der Chorus bietet vier Chorus-Typen mit zwei, vier, sechs oder acht unabhängigen Verzögerungsleitungen (Delaylines), von denen die Hälfte zum linken Ein- und Ausgang und die anderen zum rechten Ein- und Ausgang geleitet werden.

HighCut

Reduziert die hohen Frequenzanteile des Chorus-Signals.

LowCut

Reduziert die tiefen Frequenzanteile des Chorus-Signals.

Tippen Sie auf den entsprechenden Effekt-Parameter, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen (nicht alle Optionen sind für einige Parameter verfügbar):

- Normal: Die Wertänderung beträgt 1%.
- Fine: Die Wertänderung beträgt 0.1%.
- **Super Fine**: Die Wertänderung beträgt 0.01%.
- **Set Default**: Stellt den Parameter auf seine Standardeinstellung.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.

- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Flanger

Der Flanger-Effekt ähnelt sehr dem Chorus, jedoch erzeugt er zusätzlich eine Rückkopplung, die das Ausgangssignal wieder in den Eingang leitet, so dass stärkere Verstimmungen und Klangfärbungen entstehen. Bei extremen Einstellungen können Sie einen pfeifenartigen Klang vernehmen, der typisch für den Flanger-Effekt ist.

	Effect 1	Effect 2	Effect 3	Effect 4	Effect 5	
Dry/Wet	Flanger	Delay	Off	EQ	Off	Feedback
36.8 % Normal Mod	Active				Presets	+54.0 % Normal Mod
Depth						Delay
94.0 %						0.145 ms
Normal Mod						Normal
Speed						Phase Diff
0.057 Hz	Triangle					122.4 deg
Normal Mod	Shape					Normal
1 2 3 4 5 6 7)00 The	Quantu	ım Man	ual	<mark>yer 1</mark> Layer 2 Arp

(!) Für einen typischen Flanger-Effektsound sollten Sie den **Dry/Wet**-Parameter auf 50% stellen.

Dry/Wet

Bestimmt das Lautstärkeverhältnis zwischen dem Original- und dem Effektsignal. Bei einer Einstellung von 0% (Dry) wird das Signal direkt zum Audio-Ausgang geleitet, so dass kein Effekt hörbar ist. Höhere Werte blenden das Effektsignal ein. Bei der Einstellung 100% (Wet) erscheint nur das reine Effektsignal am Audio-Ausgang.

Depth

Bestimmt die Modulationstiefe des Flanger-Effektes.

Speed

Bestimmt die LFO-Geschwindigkeit des Flanger-Effektes.

Feedback

Bestimmt die Stärke des Rückkopplungssignals.

Delay

Bestimmt eine Verzögerung für das Flanger-Signal in Millisekunden.

Phase Diff

Der Phasenversatz des Modulations-Oszillators zwischen linkem und rechtem Kanal zur Erzeugung eines breiteren Stereobildes.

Shape

Bestimmt die LFO-Wellenform, die für die Flanger-Modulation verwendet wird. Sie können zwischen einer Sinus (*Sine*)- und einer Dreieckswellenform (*Triangle*) wählen.

Tippen Sie auf den entsprechenden Effekt-Parameter, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen (nicht alle Optionen sind für einige Parameter verfügbar):

- Normal: Die Wertänderung beträgt 1%.
- Fine: Die Wertänderung beträgt 0.1%.
- **Super Fine**: Die Wertänderung beträgt 0.01%.
- **Set Default**: Stellt den Parameter auf seine Standardeinstellung.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Delay

Ein Delay erzeugt Wiederholungen des Eingangssignals.

Dry/Wet

Bestimmt das Lautstärkeverhältnis zwischen dem Original- und dem Effektsignal. Bei einer Einstellung von 0% (Dry) wird das Signal direkt zum Audio-Ausgang geleitet, so dass kein Effekt hörbar ist. Höhere Werte blenden das Effektsignal ein. Bei der Einstellung 100% (Wet) erscheint nur das reine Effektsignal am Audio-Ausgang.

Feedback

Bestimmt den Anteil des verzögerten Signals, das auf den Eingang des Delay-Effektes zurückgeführt wird. Kleinere Werte erzeugen demzufolge weniger Echos als größere Werte.

Delay-L

Bestimmt die Länge der Delayschritte für den linken Kanal in Millisekunden, bzw. in musikalischen Zählzeiten bei aktivierter **Sync**-Funktion.

PingPongPan

Steuert die Rückkopplung, die vom linken zum rechten Kanal gesendet wird und umgekehrt.

Decouple

Dieser Parameter verzögert das gesyncte Delay für den rechten und linken Kanal unterschiedlich, um es etwas weniger statisch klingen zu lassen.

Delay-R

Bestimmt die Länge der Delayschritte für den rechten Kanal in Millisekunden, bzw. in musikalischen Zählzeiten bei aktivierter **Sync**-Funktion.

Sync

Synchronisiert das Delay zum Tempo des Quantum. Sie können dann **Delay-L** und **Delay-R** in musikalischen Werten einstellen.

LR Linked

Ist dieser Parameter aktiviert, arbeiten beide Verzögerungssignale (Delay-L und Delay-R) wie ein Signal. **Delay-**L dient dann zum Einstellen der gesamten Verzögerungslänge (Delay Length), **Delay-R** besitzt keine Funktion.

HighCut

Dämpft die hohen Frequenzen des Signals, welches der Delay-Effekt erzeugt. Das Filter ist vor dem Rückkopplungs-Schaltkreis angeordnet, so dass die einzelnen Schritte vorher gedämpft werden. Dies erzeugt den typischen "dumpfen" Delay-Effekt, wie er so auch bei natürlichen Echos vorkommt. Eine minimale Einstellung filtert das Signal nicht, während größere Einstellungen die hohen Frequenzen aus dem Feedbacksignal vermindern.

LowCut

Dämpft die tiefen Frequenzanteile, die vom Delay-Effekt erzeugt werden.

Tippen Sie auf den entsprechenden Effekt-Parameter, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen (nicht alle Optionen sind für einige Parameter verfügbar):

- Normal: Die Wertänderung beträgt 1%.
- Fine: Die Wertänderung beträgt 0.1%.
- **Super Fine**: Die Wertänderung beträgt 0.01%.
- **Set Default**: Stellt den Parameter auf seine Standardeinstellung.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Reverb

Der Reverb- oder Halleffekt gehört wohl zu den bekanntesten Effekten überhaupt. Das Reverb im Quantum ist als Bestandteil des Klanges zu sehen, um diesem mehr Expressivität und Breite zu verleihen.

	Effect 1	Effect 2	Effect 3	Effect 4	Effect 5	
Gain	Reverb	Off	Off	EQ	Off	Color
40.0 % Normal Mod	Active				Presets	+0.00 Normal Mod
Time						Predelay
0.59						0.35
Normal Mod						Normal
1 2 3 4 5 6 7		000 The	Quantu	ım Man	ual 🗔	ver 1 Layer 2
					4	rp

Gain

Dieser Parameter steuert den Pegel des Halleffekts. Bei einer Einstellung von 0% wird nur das "trockene" Signal direkt zum Audio-Ausgang geleitet, so dass kein Effekt hörbar ist. Höhere Werte blenden das Effektsignal ein. In der Maximal-Einstellung *100%* erscheint nur das reine Effektsignal am Audio-Ausgang.

Time

Regelt die Nachhallzeit. Kleinere Werte simulieren einen eher normal großen Raum, große Werte eine Halle oder Kirche.

Color

Bestimmt die spektrale Färbung des Halls. Bei negativen Werten werden die Höhen beschnitten, bei positiven Werten die tiefen Frequenzen.

Predelay

Bestimmt die Verzögerung bis zum Einsatz des Reverbeffektes. Kleine Einstellungen "binden" den Reverbeffekt an das Originalsignal, während größere Werte den Raumeffekt regelrecht vom ursprünglichen Signal "entkoppeln", so dass dieses etwas präsenter wirkt.

Tippen Sie auf den entsprechenden Effekt-Parameter, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen (nicht alle Optionen sind für einige Parameter verfügbar):

- Normal: Die Wertänderung beträgt 1%.
- Fine: Die Wertänderung beträgt 0.1%.
- Super Fine: Die Wertänderung beträgt 0.01%.

- **Set Default**: Stellt den Parameter auf seine Standardeinstellung.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

EQ (Equalizer)

Quantum bietet einen parametrischen Equalizer zum Anpassen des Frequenzbildes eines Klangs.

Tippen Sie im Touchscreen auf die entsprechende EQ-Kurve und bewegen Ihren Finger nach links/rechts bzw. oben/unten, um die Frequenzund Gain-Parameter zu bearbeiten Der Equalizer bietet vier Bänder mit folgenden Parametern:

EQ Dry/Wet

Bestimmt das Lautstärkeverhältnis zwischen dem Original- und dem Effektsignal. Bei einer Einstellung von 0% (Dry) wird das Signal direkt zum Audio-Ausgang geleitet, so dass kein Effekt hörbar ist. Höhere Werte blenden das Effektsignal ein. Bei der Einstellung 100% (Wet) erscheint nur das reine Effektsignal am Audio-Ausgang.

Low Freq

Steuert die Grenzfrequenz des unteren Bands (Low). Dieser Shelf-Filtertyp ähnelt einem normalen bzw. invertierten "S" und klingt und arbeitet ähnlich wie ein Lowpass-Filter mit einstellbarer Stop-Band-Dämpfung oder Anhebung.

Low Gain

Steuert die Anhebung oder Absenkung der Verstärkung im unteren Band.

Freq Shift

Durch die Frequenzverschiebung wird jede Frequenz eines Signals um den eingestellten Betrag verschoben. Das unterscheidet sich von der Tonhöhenänderung. Stellen Sie beispielsweise ein EQ-Mid-Band auf 2000 Hz mit einer Verstärkung von 10 dB ein. Jede Frequenz innerhalb des Signals wird um den gleichen Betrag verschoben, so dass die harmonischen Beziehungen innerhalb des Signals unterbrochen werden, was zu einem sehr unterschiedlichen Klang führt.

High Freq

Steuert die Grenzfrequenz des oberen Bands (High). Dieser Shelf-Filtertyp ähnelt einem normalen bzw. invertierten "S" und klingt und arbeitet ähnlich wie ein Hipass-Filter mit einstellbarer Stop-Band-Dämpfung oder Anhebung.

High Gain

Steuert die Anhebung oder Absenkung der Verstärkung im oberen Band.

Mid Freq / Mid 2 Freq

Steuert die Mittenfrequenz des entsprechenden Bandes. Dieser Glockenfilter sieht aus wie eine normale oder umgekehrte Glocke und funktioniert und klingt ähnlich wie ein Bandpass- oder Notch-Filter - wieder mit variabler Verstärkung oder Dämpfung und auch mit variabler Breite.

Mid Gain /Mid 2 Gain

Steuert die Anhebung oder Absenkung der Verstärkung im entsprechenden Mitten-Band.

Mid Q / Mid2 Q

Steuert die Filtergüte oder Breite des entsprechenden Bandes. Höhere Werte führen zu einer engeren Bandbreite, niedrigere Werte vergrößern diese.

Master Gain

Der Einsatz eines Equalizers beeinflusst meistens den Gesamtpegel des Ausgangssignals. Verwenden Sie **Master Gain**, um die Gesamtverstärkung an Ihre Bedürfnisse anzupassen.

Tippen Sie auf den entsprechenden Effekt-Parameter, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen (nicht alle Optionen sind für einige Parameter verfügbar):

- Normal: Die Wertänderung beträgt 1%.
- Fine: Die Wertänderung beträgt 0.1%.
- **Super Fine**: Die Wertänderung beträgt 0.01%.
- **Set Default**: Stellt den Parameter auf seine Standardeinstellung.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Mo-

dulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.

• **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Drive

Fügt einem Signal zusätzliche Verstärkung hinzu, wodurch es übersteuert und verzerrt wird. Das führt zu neuen Obertönen, die dem Klang einen harschen Charakter verleihen.

(!) Tippen Sie im Touchscreen auf die Drive-Kurve, um den **Amount**-Parameter zu bearbeiten.

Dry/Wet

Bestimmt das Lautstärkeverhältnis zwischen dem Original- und dem Effektsignal. Bei einer Einstellung von 0% (Dry) wird das Signal direkt zum Audio-Ausgang geleitet, so dass kein Effekt hörbar ist. Höhere Werte blenden das Effektsignal ein. Bei der Einstellung 100% (Wet) erscheint nur das reine Effektsignal am Audio-Ausgang.

Amount

Bestimmt den Grad der Signalsättigung. Bei 0.00% wird das Signal nicht verzerrt, es bleibt also "rein". Höhere Einstellungen addieren zusätzliche Obertöne zum Signal, was sich in einem wärmeren Klangcharakter äußert. Weiteres Erhöhen des **Amount**-Parameters verstärkt die Verzerrung, was sich besonders für härtere Leadsounds und Effekte eignet.

Gain

Beeinflusst hauptsächlich den Pegel des Ausgangssignals des Drive-Effekts. Verwenden Sie **Gain**, um den Gesamtpegel an Ihre Bedürfnisse anzupassen.

Туре

Legt die Art der Verzerrung fest. Folgende Verzerrungsstufen stehen zur Verfügung:

- **PNP** erzeugt eine Verzerrung basierend auf einem bipolaren Transistor.
- **Tube** simuliert eine asymmetrische Verzerrung und erinnert an eine Röhrenschaltung.
- **PickUp** simuliert einen elektromagnetischen Tonabnehmer. Dieser Typ wird bei einer Lautstärkemodulation der beteiligten Signalquellen richtig interessant.
- Diode erzeugt eine typische Dioden-Verzerrung.
- **Crunch** ist ein sinusartiger Waveshaper, mit dem sich FM-ähnliche oder bis zur Unkenntlichkeit verzerrte Klänge erzielen lassen.

Tippen Sie auf den entsprechenden Effekt-Parameter, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen (nicht alle Optionen sind für einige Parameter verfügbar):

- Normal: Die Wertänderung beträgt 1%.
- Fine: Die Wertänderung beträgt 0.1%.
- Super Fine: Die Wertänderung beträgt 0.01%.

- **Set Default**: Stellt den Parameter auf seine Standardeinstellung.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Compressor

Ein Kompressor reduziert Signale um ein einstellbares Verhältnis (**Ratio**), die einen bestimmten Pegel-Schwellenwert (**Threshold**) überschreiten. Die Geschwindigkeit dieser Pegelreduktion wird durch **Attack** gesteuert, wenn das Signal den Schwellenwert zu überschreiten beginnt und ebenfalls durch **Release**, wenn es den Schwellenwert wieder unterschreitet.

	Effect 1	Effect 2	Effect 3	Effect 4	Effect 5	
Ratio	Compressor	Off	Off	Off	Off	Attack
1:4.9 Normal Mod	Active				Presets	0.00 msec Normal
Threshold						Release
-39.50 dB						400.00 msec
Normal Mod						Normal
Input Gain						Output Gain
+0.00 dB	On			0.	99 msec	+0.00 dB
Normal	Auto Ga	in		Lo	ook Ahead	Normal
		00 Th	ne Quantı	um Man	iual	ayer 1 Layer 2 Arp

Ratio

Legt den Betrag der Verstärkungsreduktion (Kompression) fest, der auf Signale über dem eingestellten Schwellenwert angewendet wird. Ein Verhältnis von 4:1 bedeutet, dass bei einem Eingangspegel bei jeder Erhöhung um 4 dB sich der Ausgangspegel nur um 1 dB erhöht.

Threshold

Dieser Parameter regelt, ab welchem Pegel der Kompressor eingreift. Überschreitet das Signal diesen Schwellwert, so wird es bearbeitet.

Input Gain

Bestimmt die Eingangsverstärkung des eingehenden Audiosignals.

Attack

Legt fest, wie schnell der Kompressor auf Signale reagiert, die über dem eingestellten Schwellenwert (**Threshold**) liegen. Wenn die **Attack**-Zeit hoch ist, werden vor allem die schnellen Transienten des Signals nicht bearbeitet.

Release

Legt die Zeit fest, nach der die Verstärkung auf den ursprünglichen Pegel zurückkehrt, wenn das Signal unterhalb das Schwellenwerts fällt.

Output Gain

Kompensiert den durch die Kompession verursachten Verlust der Ausgangsverstärkung.

Auto Gain

Schalten Sie die **Auto Gain**-Funktion ein, um den **Output Gain** beim Einstellen des **Thresholds** automatisch zu steuern.

Look Ahead

Höhere **Look Ahead**-Werte erzeugen eine genauere Verarbeitung, erhöhen jedoch die Latenz.

Beachten Sie, dass die Einstellungen des Kompressor-Effekts mit dem aktuellen Soundprogramm gespeichert werden. Dies gilt nicht für den Compress-Regler im Output-Bereich.

Tippen Sie auf den entsprechenden Effekt-Parameter, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen (nicht alle Optionen sind für einige Parameter verfügbar):

- Normal: Die Wertänderung beträgt 1%.
- **Fine**: Die Wertänderung beträgt 0.1%.
- **Super Fine**: Die Wertänderung beträgt 0.01%.
- **Set Default**: Stellt den Parameter auf seine Standardeinstellung.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Der Ausgangs-Bereich

Compress

(!)

"Ein Regler - eine Funktion". Reduziert die Dynamik des Audiosignals. Das Signal erscheint dadurch lauter und durchsetzungsfähiger. Der Kompressoreffekt ist nach den Effekten und vor dem **Master Volume** positioniert.

Compress

Beachten Sie, dass die Einstellung des **Compress**-Reglers nicht mit einem Sound-Preset gespeichert wird.

Master Volume

Master Volume regelt den Gesamtausgangspegel des Quantum. Lautstärkeänderungen betreffen sowohl den Main Output als auch den Kopfhörerausgang. Der Aux-Ausgang wird hiervon nicht beeinflusst.

Master Volume

Die Quantum-Modulationen

Eine Modulation kann als Beeinflussung eines Klangparameters durch eine Signalquelle beschrieben werden. Die hierbei verwendeten Parameter sind die Modulationsquelle (*Source*), das Modulationsziel (*Destination*) und die Modulationsstärke (*Amount*). Der Quantum bietet 40 unabhängige Modulationszuordnungen (*Slots*) mit jeweils individuell einstellbaren Parametern für Modulationsquelle, Modulationsstärke und Modulationsziel. Die Modulationsmatrix (Mod Matrix) ist eine der leistungsfähigsten Bestandteile eines jeden Waldorf Synthesizers. Sie sollten sie also auf jeden Fall ausnutzen!

(!) Eine vollständige Tabelle aller verfügbaren Modulationsquellen und -ziele finden Sie im Anhang.

Modulationen via Bedienpanel

Der Quantum bietet die einfache Möglichkeit, eine Modulation mithilfe der Drehregler auf dem Bedienfeld direkt zuzuordnen. Diese Modulationszuordnung kann auf verschiedene Arten aufgerufen werden:

• Drücken Sie den Mod-Schalter

oder

• Tippen Sie auf einen der Anzeigeparameternamen (die sechs Parameter im Dsiplay links und rechts), um ein Aufklapp-Menü zu öffnen. Wählen Sie die Option **Modulation**. Beachten Sie, dass nicht alle Parameter diese Option bieten.

Das Display zeigt anschliessend das **Modulation Assignment**-Fenster. Das Grundkonzept ist, zuerst ein Modulationsziel auszuwählen (einen Parameter oder eine Funktion, die moduliert werden soll), dann eine Modulationsquelle (eine Funktion, z. B. ein LFO oder ein Rad, welches das Ziel moduliert) und schließlich die Intensität der Modulation (Amount) festzulegen. Dies wird auch als Modulationstiefe oder -amount bezeichnet.

- (!) Wenn Sie das Modulation Assignment-Fenster durch Klicken auf einen Anzeigeparameter geöffnet haben, ist das Modulationsziel bereits für diesen Parameter definiert.
- $\mathfrak D$ So funktioniert die Modulationszuweisung:
 - Nachdem Sie den Mod-Taster gedrückt haben, wählen Sie zunächst ein Modulationsziel aus, indem Sie an einem der blau hinterlegten Parameterregler drehen. Dieser Schritt ist nicht erforderlich, wenn im Aufklapp-Menü eines Displayparameters die Option Modulation ausgewählt ist.

- 2) Wählen Sie die entsprechende Modulationsquelle aus, indem Sie entweder an einem der verfügbaren Panel-Regler drehen (die LED unter den Drehreglern/Quellen leuchtet gelb). Durch Drehen des Reglers können Sie die gewünschte Modulationsintensität (Amount) direkt einstellen. Dies wird auch im Display angezeigt.
- Sie können auch eine der sechs Modulationsquellen im Display auswählen. Drehen Sie dazu das entsprechende Bedienelement (z. B. das Rad), um den gewünschten Modulationsbetrag einzustellen.
- 4) Sie können weitere Modulationszuweisungen hinzufügen, indem Sie Schritt 2 wiederholen. Jede Zuweisung wird im Display mit ihrer Quelle (Source), ihrer Intensität (Amount) und dem Ziel (Destination) angezeigt.
- 5) Die Intensität (**Amount**) können jederzeit durch Drehen des entsprechenden Drehreglers der Modulationsquelle ändern.
- (Denken Sie daran, dass Sie positive oder negative Modulationsbeträge einstellen können. Positive Beträge werden als grüner Balken angezeigt, negative Werte als roter Balken. Gleiches gilt für die LEDs unterhalb der entsprechenden Modulationsquelle.

Das Modulation Assignment-Fenster enthält weitere Optionen:

- **Clear Selected**-Schaltfläche: Tippen Sie auf den gewünschten Modulationseintrag, um diese auszuwählen. Tippen Sie dann auf **Clear Selected**-Schaltfläche, um die ausgewählte Modulationszuweisung zu löschen.
- **Clear All**-Schaltfläche: Tippen Sie auf diese Schaltfläche, um alle Modulationszuweisungen in der Liste zu löschen
- **Go to Matrix**-Schaltfläche: Tippen Sie auf diese Schaltfläche, um die Modulations-Matrix zu öffnen. Lesen Sie mehr hierzu im nächsten Kapitel.
- **Close-**Schaltfläche: Schließt das Modulation Assignment-Fenster. Bereits vorgenommene Modulationszuweisungen werden dabei nicht gelöscht.

Die Modulation Matrix Display-Seite

Um auf die Modulation Matrix-Display-Seite zugreifen zu können, drücken Sie zunächst den MOD-Taster oberhalb des Displays. Tippen Sie dann im Touchscreen auf die **Modulation Matrix**-Schaltfläche, um die gewünschte Seite aufzurufen.

		Modulation Mat	rix	Komplex Mod		
Slot	#	Source	Amount	Destina	ition	Amount
5	1	Keytrack		\rightarrow DF Ar	nount	-26.0 %
	2	Velocity		\rightarrow Filt1E	nv Decay	Normal
	3 Rand Trig Bipol			\rightarrow WF1 s	Sync	
Source	4	LFO 1		\rightarrow Delay	Time L	Destination
150.2	5	LFO 2		\rightarrow Drive	DryWet	Drive Drullet
LFUZ	6	Wheel		\rightarrow Delay	Time L	Drive Drywet
	7	Wheel		\rightarrow Delay	DryWet	
	8	LF0 3		\rightarrow 0sc2	Pitch	
Controller	9	Off		\rightarrow Off		Control Amount
Off		Active		Clear Slot	Clear All	+0.0 % Normal
	18 L	0000 T	he Qu	antum Man	ual	ver 1 Layer 2

Diese Seite zeigt alle Modulationszuweisungen in einer Liste. Sie können bis zu 40 Zuordnungen festlegen.

- So richten Sie eine Modulation ein:
 - Wählen Sie den gewünschten Slot mit dem Slot-Drehregler links vom Display oder tippen Sie auf den entsprechenden Slot in der Liste. Sie können die Liste nach oben und unten scrollen, indem Sie sie antippen, halten und dann den Finger nach oben oder unten bewegen.
 - Wählen Sie die gewünschte Modulationsquelle mit dem Source-Drehregler links vom Display aus. In der Modulationsquellenliste finden Sie 43 Quellen.
 - 3) Wählen Sie das gewünschte Modulationsziel mit dem **Destination**-Regler rechts vom Display aus. In der Modulationsziel-Liste gibt es 168 Ziele.
 - Stellen Sie den gewünschten Modulationsbetrag durch Drehen des Amount-Reglers rechts vom Display ein. Sie können einen positiven oder negativen Betrag einstellen.
 - 5) Sie können auch einen **Controller** mit einem **Control Amount** zu einer Modulationszuweisung hinzufügen. Mehr dazu weiter unten.

Slot

Wählt den entsprechenden Modulationsslot 1 bis 40 aus.

Source

Definiert die Modulationsquelle.

Tippen Sie auf **Source**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt Source auf die Standardeinstellung *Off.*
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Controller

Alle Modulationsquellen können auch als zusätzlicher **Controller** für die ausgewählte Quelle (**Source**) verwendet werden. Mit einem Controller wird der Ausgang der Modulationsquelle skaliert. Ein typisches Beispiel ist das Modulationsrad als Quelle und ein LFO als **Controller**. Auf diese Weise können Sie die Intensität der LFO-Modulation mit dem Rad steuern.

Tippen Sie auf **Controller**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt Controller auf die Standardeinstellung *off*.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Amount

Bestimmt die Modulationsintensität, die auf das Modulatiuonsziel angewendet wird. Da die Modulation tatsächlich eine Multiplikation des Quellensignals mit diesem Parameters ist, hängt die resultierende Amplitude von der Art der ausgewählten Modulationsquelle ab:

- Bei den unipolaren Modulationsquellen liegt die resultierende Amplitude im Bereich *0...+1*, wenn **Amount** positiv ist, oder *0...-1*, wenn **Amount** negativ ist. Unipolare Quellen sind z.B. alle Hüllkurven, das Modulationsrad, ein Pedal oder Velocity. Aber auch Release Velocity, Aftertouch (Pressure und Polyphonic Pressure).
- Bei den bipolaren Modulationsquellen liegt die resultierende Amplitude im Bereich -1...0...+1. Bipolare Modulationsquellen sind z.B. die LFOs, Keytrack und das Pitchbend.

Tippen Sie auf **Amount**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Wertänderung beträgt 2%.
- **Fine**: Die Wertänderung beträgt 0.2%.
- **Super Fine**: Die Wertänderung beträgt 0.02%.
- **Set Default**: Stellt Amount auf die Standardeinstellung +0.0%.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Destination

Definiert das Modulationsziel.

Tippen Sie auf **Destination**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt Destination auf die Standardeinstellung *Off*.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.

• **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Control Amount

Bestimmt einen zusätzlichen Betrag für den ausgewählten **Controller**. **Amount** und **Control Amount** werden auf den Gesamtbetrag aufsummiert.

Tippen Sie auf **Control Amount**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Wertänderung beträgt 2%.
- **Fine**: Die Wertänderung beträgt 0.2%.
- **Super Fine**: Die Wertänderung beträgt 0.02%.
- **Set Default**: Stellt Control Amount auf die Standardeinstellung +0.0%.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Die Active-Schaltfläche

Wählen Sie einen gewünschten Modulationseintrag. Tippen Sie auf die Schaltfläche **Active**, um die entsprechende Modulationszuweisung zu deaktivieren. Die Schaltfläche zeigt dann "Disabled" (Deaktiviert) und der Slot ist ausgegraut. Nutzen Sie das, um eine Modulation vorübergehend zu umgehen. Tippen Sie auf "Disabled", um die Modulation wieder zu aktivieren.

Die Clear Slot-Schaltfläche

Wählen Sie einen gewünschten Modulationseintrag. Tippen Sie auf die Schaltfläche **Clear Slot**, um diese Modulationszuweisung zu löschen.

Die Clear All-Schaltfläche

Tippen Sie auf diese Schaltfläche, um alle Modulationszuweisungen zu löschen, die in der Modulationsmatrix angezeigt werden. Zum Abschluss dieses Vorgangs ist eine Bestätigung erforderlich.

Die Modulation Matrix-Liste

Die Matrixliste zeigt alle aktuellen Modulationen. Wenn ein **Controller** ausgewählt ist, wird er auch in der **Source**-Spalte angezeigt. Wenn ein **Control Amount** festgelegt ist, wird er auch in der **Amount**-Spalte Betrag als separater Balken angezeigt.

Die zusätzlichen Modi

Die Perform Modus-Seite

Um auf die Perform-Seite zuzugreifen, drücken Sie den **Perform-**Taster unter dem Touchscreen. Um die gewünschte

Option auszuwählen, tippen Sie auf den entsprechenden Reiter im oberen Anzeigebereich.

Der Favorites-Reiter

Dies ist ein spezieller Perform-Modus für Live-Musiker. Hier können Sie pro **Set** 20 Sound-Programme zur schnelleren Auswahl einrichten. Sie können bis zu sechs Sets definieren, was bedeutet, dass Sie mit nur zweimal Antippen schnell auf 120 Soundprogramme zugreifen können.

(!) Sie können auch auf den Favorites-Reiter zugreifen, indem Sie das Auswahlrad drücken. Dies ist aus jedem Modus heraus möglich, es sei denn, die **Load**-Seite ist geöffnet.

 \bigcirc So funktioniert es:

 Wählen Sie das gewünschte Klangprogramm mit den Tastern Prev/Next aus oder tippen Sie im unteren Anzeigebereich auf den Namen des Sounds.

Favori	tes	Arp	Sequencer	Modulation Pad	
Red Rexor 0001 [M	nator IDI 0]	Stretcher 0002 [MIDI 1]	Fanfare Bells 0003 [MIDI 2]	Wheel of Fortu 0004 [MIDI 3]	
	C	0ry Funky Mono 0005 [MIDI 9]	Timptams 0006 [MIDI 10]	The Quantum Ma 0000 [MIDI 11]	
P5 Low S 0009 [MI	itrings DI 12]				
	м	uted Morpher 0008 [MIDI 17]		Muted Morpher 0007 [MIDI 19]	
Set 1	Set 2	Set 3	Set 4 Se	t5 Set6	
15 6 7 8 L R	0000	The Qua	antum Ma	anual Lay	<mark>er 1</mark> Layer 2 rp

- 2) Tippen und halten Sie einen der 20 Kästchen. Nach kurzer Zeit öffnet sich ein Aufklapp-Fenster. Hier können Sie das aktuelle Soundprogramm dem ausgewählten Kästchen zuordnen (Assign). Sie können auch den ausgewählten Block löschen (Clear) oder die Aktion abbrechen (Close).
- 3) Wiederholen Sie die Schritte 1 und 2, bis Sie alle Kästchen mit Ihren bevorzugten Klangprogram-

men gefüllt haben. Sie können auf Set 1 bis 6 tippen, um eine neue Favoritenmatrix auszuwählen.

- 4) Um ein bevorzugtes Klangprogramm aufzurufen, tippen Sie einfach auf das gewünschte Matrixkästchen oder blättern Sie mit dem Auswahlrad durch die Klangprogramme des aktuellen Sets. Wenn Sie ein Soundprogramm laden möchten, drücken Sie auf das Auswahlrad.
- 5) Ein Set kann jeweils nur ein Soundprogramm enthalten. Das bedeutet, wenn Sie dasselbe Soundprogramm, welches bereist zuvor hinzugefügt wurde, erneut hinzufügen möchten, wird das ältere bei dieser Aktion aus dem Set gelöscht.

Der Arpeggiator (Arp)-Reiter

Der Arpeggiator teilt gespielte Akkorde in einzelne Noten auf und wiederholt diese rhythmisch. Um eine breite Palette von Anwendungen zu ermöglichen, können verschiedene Ablaufarten definiert werden. In Ergänzung zu seinen klangsynthetischen Möglichkeiten bietet der Quantum einen umfangreich zu programmierenden Arpeggiator für jedes einzelne Soundprogramm.

Drücken Sie auf den **Arp**-Taster (oberhalb der beiden Steuerräder), um den Arpeggiator zu aktivieren oder zu deaktivieren.

	Favorites	Arp	Se	quencer	Modulatio	n Pad	
Bpm Internal 120.0 Normal	Running						Pattern 1
Step Length							Reset
1/16							Off
Swing							RelGate
0.50	Arp	Up	2 oct	As Playe	d Each	Note	0.80
Normal Mod	Mode	Algorithm	Octaves	SortOrde	r Velo	city	Normal Mod
1 2 3 4 5 6 7		00 The	Quant	um Ma	inual	Lay	ver 1 Layer 2

(!) Wir empfehlen, anstelle des **Latch**-Tasters den **Chord**-Taster zu drücken. Im **Latch**-Modus werden alle gespielten Noten gehalten, bis Sie diese erneut auslösen.

() Der Arpeggiator gibt MIDI-Noten aus, wenn die MIDI Out-Funktion auf der **Global**-Menüseite aktiviert ist.

Bpm

Stellt das Grundtempo des Arpeggiators in Bpm (Beats per Minute) ein. Das Tempo hat unter anderem auch Einfluss auf die anderen tempobasiereten Funktionen des Quantum(z.B. LFOs, Komplex Modulator, Delayeffekt).

Step Length

Bestimmt die Rate, mit der Noten ausgelöst werden, d.h. die Geschwindigkeit, mit der das Arpeggio ausgeführt wird. Zusätzlich zum **Bpm**-Parameter können Sie hiermit die Wiedergabegeschwindigkeit beeinflussen. Werte lassen sich in Teilern von Schlägen (Beats) angeben. Ist **Step Length** beispielsweise auf *1/8* eingestellt, spielt das Arpeggio acht Noten pro Takt.

Swing

Bestimmt, wie stark jeder der einzelnen Schritte zeitlich beeinflusst wird. Wenn **Swing** auf 0.50 gestellt ist, findet keine Veränderung statt. Das Arpeggio wird ohne "Shuffle" wiedergegeben. Einstellungen zwischen 0.51 und 0.95 verstärken die Verschiebung und erzeugen ein typisches Swing-Feeling. Sie können auch Einstellungen kleiner als 0.50 verwenden, um das Timing zu beeinflussen.

Pattern

Im **Pattern**-Aufklappmenü können Sie eines von 31 internen Patternpresets auswählen.

Reset

Legt ein Limit für die gespielten Noten fest. Dies ist nützlich, um "schräge" Takte zu erzeugen. Setzen Sie **Reset** auf *8* oder *16*, um ein Arpeggio zu Beginn eines Takts zu starten.

RelGate (Release Gate)

Mit den Einstellungen des Aufklappmenüs **RelGate** können Sie die Notenlänge abhängig von der Originallänge bestimmen. Je niedriger der Wert, desto kürzer die gespielten Noten.

Mode

Der Quantum bietet auch einen programmierbaren Step Sequenzer. Dieser kann als Luxus-Arpeggiator verwendet werden. Daher werden die meisten Parameter vom Arpeggiator und vom Sequencer gemeinsam genutzt. Hier können Sie zwischen dem Arpeggiator-Modus, der die Standard-Arp-Parameter verwendet, und dem Sequenzer-Modus wechseln, in dem Sie eigene Patterns programmieren können. Dieser **Mode** ist auf der Arpeggiator- und der Sequenzer-Seite verfügbar.

Algorithm

Bestimmt die Richtung der Wiedergabe des Arpeggios. Diese Einstellung steht in enger Verbindung mit den Parametern **Octaves** und **Sort Order**:

- Ist *Up* ausgewählt, wird die Notenliste aufwärts ausgespielt und falls mehr als eine Oktave eingestellt ist, aufwärts transponiert. Das Arpeggio beginnt also in der ursprünglichen Oktave und durchläuft dann nacheinander so viele Oktaven wie bei **Octave** eingestellt. Danach wird das Arpeggio wiederholt.
- Ist Down ausgewählt, wird die Notenliste abwärts ausgespielt. Das Arpeggio beginnt in der höchsten unter Octave eingestellten Oktave und wird dann ab-

wärts transponiert bis zur ursprünglichen Oktave. Danach erfolgt die Wiederholung

- Ist Up ^ Down ausgewählt, wird die Notenliste erst aufwärts ausgespielt und die Oktaven aufwärts transponiert. Nachdem die letzte Note der Liste in der höchsten Oktave ausgespielt wurde, wird die Notenliste rückwärts ausgespielt und abwärts transponiert, bis die erste Note der Liste der ursprünglichen Oktave erreicht ist. Dann wird das Arpeggio wiederholt.
- Ist Up Down ausgewählt, wird die Notenliste erst aufwärts ausgespielt und aufwärts transponiert. Nachdem die letzte Note der Liste in der höchsten Oktave ausgespielt wurde, wird die Notenliste rückwärts ausgespielt und abwärts transponiert, bis die erste Note der Liste der ursprünglichen Oktave erreicht ist. Dann wird das Arpeggio wiederholt.
- Ist *Down v Up* ausgewählt, wird die Notenliste erst rückwärts ausgespielt. Das Arpeggio beginnt in der höchsten Oktave, die Sie unter **Octave** eingestellt haben. Die Transponierung erfolgt dann abwärts. Wenn die erste Note der Liste der ursprünglichen Oktave erreicht ist, wird die Notenliste vorwärts ausgespielt und aufwärts transponiert bis die letzte Note in der höchsten Oktave erreicht ist. Danach erfolgt die Wiederholung.

- Ist *Down Up* ausgewählt, wird die Notenliste zuerst rückwärts abgespielt und die Oktaven werden nach unten transponiert. Das Arpeggio beginnt mit der höchsten unter **Octave** eingestellten Oktave. Nach dem Erreichen der ersten Note der Notenliste in der ursprünglichen Oktave wird diese Note wiederholt und die Notenliste wird vorwärts gespielt. Die Oktaven werden bis zur letzten Note der Notenliste in der höchsten zu spielenden Oktave nach oben verschoben. Dann wird das Arpeggio wiederholt.
- Ist *Random* ausgewählt, wird die Notenliste zufällig ausgelesen und gespielt.

Octaves

Bestimmt, über wie viele Oktaven die eingespielte Notenliste wiedergegeben wird. Wenn Sie 0 ausgewählt haben, wird das Arpeggio so abgespielt, wie es eingegeben wurde. Größere Werte bewirken, dass die Notenliste in höheren Oktaven wiederholt wird. Dabei bestimmt **Algorithm**, in welcher Oktave das Arpeggio startet. Auch wenn ein gespielter Akkord Noten aus mehreren Oktaven enthält, verändert sich die Notenliste nicht. Sie wird wiedergegeben und dann transponiert.

SortOrder

Im **SortOrder**-Aufklappmenü können Sie die Reihenfolge der von ihnen eingespielten Noten der Notenliste bestimmen:

- Wenn *As Played* angewählt ist, werden die Noten in der Reihenfolge aufgelistet, in der sie eingespielt wurden.
- Wenn *Reversed* angewählt ist, werden die Noten in umgekehrter Reihenfolge des Einspielens aufgelistet. Z.B.: Sie spielen C1, E1 und G1, dann lautet die Liste: G1, E1 und C1.
- Wenn *Key Lo>Hi* angewählt ist, werden die Noten nach aufsteigender Tonhöhe sortiert. Haben Sie z.B. E1, G1 und C1 gedrückt lautet die Notenliste: C1, E1 und G1.
- *Key Hi>Lo* sortiert das genannte Beispiel folgendermaßen: G1, E1 und C1.
- Wenn *Vel Lo>Hi* angwählt ist, werden die Noten aufsteigend nach ihrer Anschlagsstärke sortiert.
- Wenn *Vel Hi>Lo* angewählt ist, werden die Noten absteigend nach Anschlagsstärke sortiert.
- Wenn *Chord* angewählt ist, spielt der Arpeggiator einen Akkord aus allen Noten der Notenliste.

Velocity

Im Aufklappmenü **Velocity** können Sie einstellen, welche der gespielten Noten die Anschlagsstärke des Arpeggios bestimmt.

- Bei *Each Note* behält jede Note die Anschlagstärke mit der Sie diese eingespielt haben.
- Bei *First Note* werden alle Noten mit der Anschlagstärke der ersten Note gespielt.
- Wenn *Last Note* angewählt ist, werden alle Noten mit der Anschlagstärke der letzten Note gespielt.

Tippen Sie auf den entsprechenden Arpeggiator-Parameter, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen (nicht alle Optionen sind für einige Parameter verfügbar):

- Normal: Die Wertänderung erfolgt normal.
- Fine: Die Wertänderung erfolgt fein.
- **Super Fine**: Die Wertänderung erfolgt sehr fein.
- **Set Default**: Stellt den Parameter auf seine Standardeinstellung.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.

- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

 (\mathbf{I})

Der Sequencer-Reiter

Diese Display-Seite enthält einen programmierbaren Step-Sequenzer, bei dem Sie bis zu 32 Schritte pro Takt nutzen können. Für jeden Schritt können Länge, Anschlagstärke und Tonhöhe einer Note festgelegt werden. Sie können auch vier zusätzliche Controller-Sequenzen erstellen, die als Modulationsquellen verwendet werden können.

Der Sequenzer gibt MIDI-Noten aus, wenn die MIDI Out-Funktion auf der **Global**-Menüseite aktiviert ist.

Um die Wiedergabe zu starten, tippen Sie auf die Schaltfläche Off (wechselt zu Running) und spielen Sie eine oder mehrere Noten. Sie können auch den Arp-Taster drücken, um den Sequenzer zu starten.

Die grafische Sequenzer-Übersicht

Das Display gibt Ihnen einen Überblick über alle Schritte einer Sequenz. Sie können die Grafik wie folgt bearbeiten:

- Jeder Balken in der Mitte der Grafik steht für einen Schritt (Step). Die Anzahl dieser Balken hängt von den Einstellungen des Parameters **Step Length** ab. Bis zu 32 Balken/Schritte sind möglich. Tippen Sie auf einen Balken, um diesen auszuwählen (er leuchtet dann rot). Bewegen Sie Ihren Finger nach oben oder unten, um die Tonhöhe des ausgewählten Schritts zu ändern. Bewegen Sie Ihren Finger von links nach rechts oder umgekehrt, um eine Sequenz zu "zeichnen".
- Unterhalb der Balkengrafik finden Sie eine gleiche Anzahl von Blöcken. Jeder Block repräsentiert einen Schritt. Tippen Sie auf einen gewünschten Block, um den entsprechenden Schritt stummzuschalten. Gleiches gilt für das Aufheben der Stummschaltung. Ein ausgewählter Block leuchtet rot und zeigt die aktuelle Tonhöhe an (z. B. +3).

*₹*waldorf

- Für eine genauere Bearbeitung eines ausgewählten Schritts können Sie den **Pitch**-Parameter verwenden.
- Um einen besseren Überblick zu erhalten, können Sie die Grafik auf Wunsch in Anzeigebereiche von 1-16 und 17-32 unterteilen. Tippen Sie auf die entsprechende Schaltfläche oberhalb der Balkengrafik.
- Basierend auf der ausgewählten Schrittübersicht zeigen die Balken Tonhöhe, Anschlagstärke (Velocity), Gate (Notenlänge) oder einen der vier Modulationsparameter an.

Bpm

Stellt das Grundtempo des Sequenzers in Bpm (Beats per Minute) ein. Das Tempo hat unter anderem auch Einfluss auf die anderen tempobasiereten Funktionen des Quantum(z.B. LFOs, Komplex Modulator, Delayeffekt).

Step Length

Bestimmt die Rate, mit der Noten ausgelöst werden, d.h. die Geschwindigkeit, mit der eine Sequenz ausgeführt wird. Zusätzlich zum **Bpm**-Parameter können Sie hiermit die Wiedergabegeschwindigkeit beeinflussen. Werte lassen sich in Teilern von Schlägen (Beats) angeben. Ist **Step Length** beispielsweise auf *1/8* eingestellt, spielt die Sequenz acht Noten pro Takt.

Swing

Bestimmt, wie stark jeder der einzelnen Schritte zeitlich beeinflusst wird. Wenn **Swing** auf 0.50 gestellt ist, findet keine Veränderung statt. Die Sequenz wird ohne "Shuffle" wiedergegeben. Einstellungen zwischen 0.51 und 0.95 verstärken die Verschiebung und erzeugen ein typisches Swing-Feeling. Sie können auch Einstellungen kleiner als 0.50 verwenden, um das Timing zu beeinflussen.

Pitch/Velocity/Gate/Param 1 - 4

Dieser Parameter hängt von der Einstellung der **Notes**-Schaltfläche oberhalb der Grafik ab. Wenn **Notes** ausgewählt ist, wird **Pitch** angezeigt und Sie können die Tonhöhe für den ausgewählten Schritt einstellen. Wenn **Velo** ausgewählt ist, können Sie die Geschwindigkeit für den ausgewählten Schritt ändern, bei **Gate** die Schrittlängen. Mit **Param 1** bis **4** lassen sich bis zu vier Controllerverläufe zeichnen, die als Modulationsquellen genutzt werden können.

Seq Length

Bestimmt die Schrittänge der Step-Sequenz. Eine Sequenz muss mindestens einen Schritt enthalten. Sie können bis zu 32 Schritte einrichten.

The Sequencer in Velocity mode

RelGate (Release Gate)

Mit den Einstellungen des Aufklappmenüs **RelGate** können Sie die Notenlänge abhängig von der Originallänge bestimmen. Je niedriger der Wert, desto kürzer die gespielten Noten.

Mode

Hier können Sie zwischen dem Sequenzer- und dem Arpeggiator-Modus umschalten. **Mode** ist auf der Arpeggiator-Seite und der Sequenzer-Seite verfügbar.

Direction

Legt die Wiedergaberichtung der die Sequenz fest:

- Ist *Forward* ausgewählt, werden die Noten vom ersten bis zum letzten Schritt gespielt. Danach wird die Sequenz wiederholt.
- Ist *Backwards* ausgewählt, werden die Noten vom letzten bis zum ersten Schritt gespielt. Danach wird die Sequenz wiederholt.
- Ist *Ping-Pong* ausgewählt, werden die Noten vom ersten bis zum letzten Schritt und dann zurück zum ersten Schritt usw. gespielt.
- Ist *Forw-Back* ausgewählt, werden die Noten vom ersten bis zum letzten Schritt gespielt. Der letzte Schritt wird wiederholt und die Sequenz läuft zurück zum ersten Schritt, der auch wiederholt wird und so weiter.
- Ist *One-Shot* ausgewählt, werden die Noten vom ersten bis zum letzten Schritt gespielt. Dann stoppt die Sequenz.

Reset

Bestimmt das Verhalten des Step-Sequenzers, wenn eine neue Note ausgelöst wird:
- Ist *First Key* ausgewählt, beginnt die Sequenz immer von Anfang an, wenn eine neue Note ausgelöst wird.
- Ist *No Reset* ausgewählt, wird die Sequenz immer abgespielt, unabhängig davon, ob neue Noten ausgelöst werden.
- Ist *Random* ausgewählt, beginnt die Sequenz immer an einer zufälligen Position, wenn eine neue Note ausgelöst wird.

Scale

Öffnet ein Aufklapp-Menü mit unterschiedlichen Musikskalen zur Auswahl, z.B. *Chromatic, Major, Minor* or *Lydian dominant*.

Scale Root

Legt den Grundton für die verwendete Skala (Scale) fest.

Tippen Sie auf den entsprechenden Sequenzer-Parameter, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen (nicht alle Optionen sind für einige Parameter verfügbar):

- Normal: Die Wertänderung erfolgt normal.
- Fine: Die Wertänderung erfolgt fein.

- Super Fine: Die Wertänderung erfolgt sehr fein.
- **Set Default**: Stellt den Parameter auf seine Standardeinstellung.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Die Sequencer-Schaltflächen

Oberhalb der Grafik befinden sich vier Schaltflächen mit weiteren Optionen.

Running/Off

Hiermit starten oder stoppen Sie die Sequenzer-Wiedergabe. Sie können auch den **Arp**-Taster im Steuerradbereich verwenden.

Record/Stop Record

Hiermit können Sie die Echtzeit-Aufnahmefunktion starten und stoppen. Dabei wird für den einzelnen Schritt eine gespielte Note (deren Tonhöhe) aufgenommen.

Notes/Velo/Gate/Param 1 bis 4

Wenn **Notes** ausgewählt ist, wird in der Grafik **Pitch** angezeigt und Sie können die Tonhöhe für den ausgewählten Schritt einstellen. Wenn **Velo** ausgewählt ist, können Sie die Geschwindigkeit für den ausgewählten Schritt ändern, bei **Gate** die Schrittlängen. Mit **Param 1** bis **4** lassen sich bis zu vier Controllerverläufe zeichnen, die als Modulationsquellen in der Matrix genutzt werden können.

1-32/1-16/17-32

Tippen Sie auf diese Schaltfläche, um ein Aufklapp-Menü zu öffnen, in dem Sie die grafische Übersicht der Schritte umschalten können. Sie können alle Schritte (1-32), nur die Schritte 1-16 oder nur die Schritte 17-32 anzeigen lassen.

Presets

Tippen Sie auf die **Presets**-Schaltfläche, um ein Aufklapp-Fenster zum Laden, Speichern und Verwalten von Step-Sequenzen zu öffnen. Die Erklärung zu allen Optionen finden Sie im **Presets**-Kapitel des Wavetable-Oszillators.

Der Modulation Pad-Reiter

Diese Seite bietet ein X-Y-Pad, einen zweidimensionalen Controller, der auf zwei ausgewählten Modulationsparametern basiert.

Zuerst müssen Sie den X- und Y-Controller in der **Modulations Matrix** definieren. Sie können hier zum Beispiel eine Modulation für **Cutoff** (Pad X) und **Resonance** (Pad Y) einrichten.

146

X/Y Polarity

Beide Controller können von *Bipolar* auf *Unipolar* umgeschaltet werden. Bei den sogenannten unipolaren Modulationsquellen liegt die resultierende Amplitude im Bereich von 0... + 1. Bei den bipolaren Modulationsquellen liegt die resultierende Amplitude im Bereich von -1... 0... + 1.

Spring Back X/Y

Bei der Einstellung *On* springt der Anfasser wieder in die Mitte des Pads zurück, wenn Sie Ihren Finger loslassen. Bei der Einstellung *Off* bleibt der Anfasser in seiner letzten Position.

Tippen Sie auf den entsprechenden Modulation Pad-Parameter, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt den Parameter auf seine Standardeinstellung.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Beachten Sie, dass sich die Modulation Pad-Seite automatisch öffnet, wenn Sie den Perform-Taster betätigen.

Die Layer Modus-Seite

Um den Layer-Modus aufzurufen, drücken Sie auf den **Layer-**Schalter rechts unterhalb des Touchscreen-Displays.

Hier können Sie Einstellungen zu den beiden Sound-Layer sowie für das Audio-Output-Routing vornehmen. Sie finden hier auch die Bedienelemente für den Unisono-Modus.

Um den gewünschten Modus auszuwählen, tippen Sie auf den entsprechenden Reiter (Levels & Routing oder Voices).

Levels & Routing

Der Quantum bietet einen Dual-Sound-Modus, d.h. es können zwei verschiedene Sounds gleichzeitig als Layer- oder Split-Sounds gespielt werden.

Um zwischen Layer 1 und Layer 2 zu wechseln, tippen Sie einfach auf die entsprechende **Layer**-Schaltfläche in der rechten unteren Ecke des Touchscreen-Displays. Der aktuell ausgewählte **Layer**-Button leuchtet auf. Direkt unter den Layer-Schaltflächen werden der aktuelle Layer-Modus sowie der Betriebszustand des Arpeggiators oder des Sequenzers angezeigt.

- (!) Beachten Sie, dass sich beide Sound-Layer die maximale Polyphonie von acht Stimmen teilen.
- (!) Grundlegende Layer-Einstellungen können auf der **Voices**-Displayseite gemacht werden.

	Levels & Routi	ng	Voices	
Vol				Amp Velo Amt.
0.10				
Uab				+28.5 %
Normal Mod				Normal
-				
Pan				
Center				
Normal Mod				
				0 ·
input votume				Gain
:(-)D				-0.0 dB
-Ini uB	Main Output	On	Off	+0.0 uB
Normai	Input Routing	Normat		
1 2 3 4 5 6 7	0003 F	anfare Bells		Layer 1 Layer 2
				Mono Arp

Vol (Volume)

Hier legen Sie die Lautstärke des ausgewählten Layers fest.

Tippen Sie auf **Vol**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

• Normal: Die Wertänderung erfolgt normal.

Die zusätzlichen Modi

- **Fine**: Die Wertänderung erfolgt fein.
- Super Fine: Die Wertänderung erfolgt sehr fein.
- **Set Default**: Stellt Volume auf die Standardeinstellung *0 dB*.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Pan (Panning)

Hier bestimmen Sie das Panorama des ausgewählten Layers.

Tippen Sie auf **Pan**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Panning-Wertänderung beträgt 2%.
- Fine: Die Panning-Wertänderung beträgt 0.2%.

- **Super Fine**: Die Panning-Wertänderung beträgt 0.02%.
- Set Default: Stellt Pan auf die Standardeinstellung Center.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **Modulations**: Öffnet das Mod-Menü, um eine Modulation für diesen Parameter einstellen. Wie Sie eine Modulation einrichten, wird im Kapitel "Die Quantum-Modulationen" erklärt.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Input Volume

Hier bestimmen Sie die Eingangslautstärke eines externen Audiosignals für die ausgewählte Ebene. Verwenden Sie diesen Parameter, wenn Sie ein externes Audiosignal im **Live Granular**-Modus durch den Signalpfad des Quantum schicken möchten. Passen Sie mit dieser Einstellung auf, da höhere Werte den Klang verzerren können.

Tippen Sie auf **Input Volume**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

• Normal: Die Wertänderung erfolgt normal.

Die zusätzlichen Modi

- **Fine**: Die Wertänderung erfolgt fein.
- Super Fine: Die Wertänderung erfolgt sehr fein.
- **Set Default**: Stellt Input Volume auf die Standardeinstellung *-inf dB*.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Amp Velo Amt. (Amplifier Velocity Amount)

Bestimmt, wie stark die Lautstärke von der Tastatur-Anschlagstärke abhängt. Benutzen Sie diese Funktion, um dem Klang stärkeren Ausdruck zu verleihen. Bei Einstellung 0.0% hat der Tastaturanschlag keinerlei Einfluss auf die Lautstärke. Klassische Orgeln arbeiten auf diese Weise, da sie prinzipbedingt keinen dynamischen Anschlag besitzen. Bei positiven Werten steigt die Lautstärke proportional zur Anschlagstärke. Dies ist die am meisten benutzte Variante, die ein klaviertypisches Lautstärkeverhalten liefert. Bei negativen Einstellungen sinkt die Lautstärke mit zunehmenden Anschlag. Dadurch entsteht ein unnatürliches Verhalten, das sich vor allem für Effektklänge eignet. Da der Verstärker immer in Verbindung mit der Lautstärkehüllkurve arbeitet, bestimmt der **Amp Velo Amt.**-Parameter genaugenommen die Modulationsstärke der Hüllkurve.

Tippen Sie auf **Amp Velo Amt.**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Wertänderung erfolgt normal.
- Fine: Die Wertänderung erfolgt fein.
- Super Fine: Die Wertänderung erfolgt sehr fein.
- **Set Default**: Stellt Amp Velo Amt auf die Standardeinstellung +0.0 %.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Gain

Hier bestimmen Sie die Verstärkung für ein externes Signal. Stellen Sie sicher, dass Sie den Gesamtpegel eines externen Audiosignals anpassen, indem Sie **Input Volume** in Verbindung mit **Gain** verwenden. Tippen Sie auf **Gain**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Wertänderung erfolgt normal.
- Fine: Die Wertänderung erfolgt fein.
- **Super Fine**: Die Wertänderung erfolgt sehr fein.
- **Set Default**: Stellt Gain auf die Standardeinstellung +0.0 dB.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Input Routing

Hier können Sie den Signalfluss für ein eingehendes Audiosignal bestimmen.

Tippen Sie auf **Input Routing**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Off: Ein eingehendes Signal wird ignoriert.
- **Main Output**: Ein eingehendes Audiosignal wird direkt zum Main Output des Quantum geleitet.

- **Aux Output**: Ein eingehendess Audiosignal wird direkt an den Aux-Ausgang des Quantum geleitet.
- **FX Layer 1**: Ein eingehendes Audiosignal wird direkt in den Effektbereich von Layer 1 geleitet.
- **Filter L1**: Ein eingehendes Audiosignal wird direkt in das Dual Analog-Filter von Layer 1 geleitet.
- **Former L1**: Ein eingehendes Audiosignal wird direkt in den Digital Former von Layer 1 geleitet.
- **FX Layer 2**: Ein eingehendes Audiosignal wird direkt in den Effektbereich von Layer 2 geleitet.
- **Filter L2**: Ein eingehendes Audiosignal wird direkt in das Dual Analog-Filter von Layer 2 geleitet.
- **Former L2**: Ein eingehendes Audiosignal wird direkt in den Digital Former von Layer 2 geleitet.

(Global) Send Main

Bestimmt, ob der aktuell ausgewählte Layer-Sound an den Main-Output des Quantum gesendet wird (*On*) oder nicht (*Off*). Wenn das Ausgangs-Routing (Output Routing) auf unter **Global** -> **Settings** -> **Audio** auf *Global* eingestellt ist, weist dieser Parameter jedem Layer die global bestimmten Ausgänge zu, unabhängig von den Patch-Einstellungen und behält diese auch konstant.

Send Aux

Bestimmt, ob der aktuell ausgewählte Layer-Sound an den Aux-Output des Quantum gesendet wird (*On*) oder nicht (*Off*).

(!) Beachten Sie, dass Sie beide Layer auf Wunsch zu allen Ausgängen routen können. Sie können auch unterschiedliche Audioausgänge für jedes Layer einrichten.

Voices

Hier stellen Sie den Layer-Modus ein und wie viele Stimmen ausgelöst werden, wenn eine Note gespielt wird.

	Lovala 8	Pouting	Voi		
	Levels o	Routing	VOIC	tes -	
					Unisono Detune
					0.20
					Normal
					Unisono Pan
					90 deg
					Normal
					Unicono Delav
					onisono Detay
	Single			2	0.25
	Single			2	Normal
	Timbre Mode			Unisono Count	
1 2 3 4 5 6 7		0 The Qu	antum Ma	inual 🔒	yer 1 Layer 2
				Seq	, Uni2

Die Voices-Displayseite mit aktiver Unisono-Sektion

Timbre Mode

Der Quantum bietet drei verschiedene Modi für die Sound-Layer:

• **Single**: Beide Sound-Layer besitzen individuelle Einstellungen und können nicht zusammen gespielt wer-

den. Wechselns Sie zwischen den beidne Layern wechseln, indem Sie im Touchscreen-Display auf die Schaltfläche **Layer 1** oder **Layer 2** tippen.

- **Split**: Layer 1 und Layer 2 nutzen einen definierbaren Tastaturbereich zum Spielen. Eine typische Situation: ein Bass-Sound wird im unteren Bereich des Keyboards gespielt, ein Lead-Sound im oberen Bereich. Verwenden Sie die Parameter **Voices** und **Min Key/Max Key** beider Layer, um die gewünschten Tastaturbereiche für die Split-Sounds festzulegen.
- **Layered**: Beide Sound-Layer werden gleichzeitig über den gesamten Tastaturbereich abgespielt. Verwenden Sie diese Option, um zwei Sounds zu kombinieren, beispielsweise einen Pad-Sound und einen Poly-Lead.

Unisono Count

Hier legen Sie die Anzahl der Stimmen fest, die beim Spielen einer Note gleichzeitig ausgelöst werden. Nur die erste Stimme hat hierbei eine hohe Priorität. Das bedeutet, dass weitere gespielte Noten abgeschnitten werden können. Diese anderen Stimmen können nur erklingen, wenn Stimmen verfügbar sind oder wenn andere Unisono-Stimmen mit niedrigerer Priorität abgeschnitten werden können. Dadurch wird sichergestellt, dass ältere Noten mindestens eine Stimme spielen, solange die Stimmzuordnung nicht dazu gezwungen wird, diese Stimme für eine neue Note zu stehlen. Sie können hier maximal acht Stimmen auswählen.

Tippen Sie auf **Count**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt Count auf die Standardeinstellung *Off.*
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.
- (!) Bitte beachten Sie, dass durch die gewählte Anzahl von Unisono-Stimmen die Anzahl der verfügbaren Gesamtstimmen verringert wird.
- () Die nachfolgenden Parameter (Unisono Detune, Pan und Delay) sind nur verfügbar, wenn für die Unisono Count ein Wert größer als 1 eingestellt ist.

Unisono Detune

Regelt die Verstimmung der Unisono-Stimmen. Jede Stimme wird dabei anders verstimmt. Mit **Detune** steuern Sie die Gesamtverstimmung.

Tippen Sie auf **Detune**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Wertänderung erfolgt normal.
- Fine: Die Wertänderung erfolgt fein.
- Super Fine: Die Wertänderung erfolgt sehr fein.
- **Set Default**: Stellt Detune auf die Standardeinstellung 0.20.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Unisono Pan

Steuert das Panning der Unisono-Stimmen. Jede Stimme wird im Panorama anders angeordnet. Mit **Pan** steuern Sie den Gesamtgrad.

Tippen Sie auf **Pan**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Wertänderung erfolgt normal.
- Fine: Die Wertänderung erfolgt fein.
- **Super Fine**: Die Wertänderung erfolgt sehr fein.
- **Set Default**: Stellt Pan auf die Standardeinstellung 90 deg.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Unisono Delay

Steuert die Verzögerung der Unisono-Stimmen in Bezug auf die zuerst gespielte Note. Jede Stimme wird etwas anders verzögert, **Delay** steuert hierbei die Gesamtverzögerung.

Tippen Sie auf **Delay**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

• Normal: Die Wertänderung erfolgt normal.

Die zusätzlichen Modi

- Fine: Die Wertänderung erfolgt fein.
- Super Fine: Die Wertänderung erfolgt sehr fein.
- **Set Default**: Stellt Delay auf die Standardeinstellung 0.25.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.
- (!) Die nachfolgenden Parameter sind nur verfügbar, wenn **Timbre Mode** auf *Split* eingestellt ist.

Voices (nur für Split Mode)

Hier legen Sie fest, wie viele Stimmen der entsprechende Sound-Layer spielen kann. Denken Sie daran, dass das Quantum eine Gesamtpolyphonie von acht Stimmen besitzt. Wenn Sie für Layer 1 fünf Stimmen festlegen, wird für Layer 2 automatisch drei Stimmen eingestellt und umgekehrt.

Die Voices-Displayseite im Split Layer-Modus mit aktiven Unisono-Stimmen

Min Key / Max Key (nur für Split Mode)

Hier legen Sie den Tastaturbereich für den ausgewählten Layer im **Split**-Modus fest. Die niedrigste Einstellung ist 0 (Note C-2), die höchste 60 (Note C8).

Tippen Sie auf **Min Key** oder **Max Key**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

• **Set Default**: Stellt Min Key/Max Key auf die Standardeinstellung.

- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.
- Set From Keys: Spielen Sie eine Taste auf dem Keyboard, um die entsprechende Note festzulegen.

Controller Mode (nur für Split und Layered Mode)

Bestimmt, welcher Layer mit dem Modulationsrad, dem Pitch-Bend, Aftertouch und dem Modulations-Pad beeinflusst werden kann.

- **Both**: Steuerräder und Spielkontrollen wirken sich auf beide Layer aus.
- Layer 1 / Layer 2: Steuerräder und Spielkontrollen wirken nur auf Layer 1 oder Layer 2.
- **Selected**: Steuerräder und Spielkontrollen wirken auf den aktuell angewählten Layer.

Der Global-Modus

Um auf die Global-Modus Display-Seite zugreifen zu können, drücken Sie den **Global**-Taster unterhalb des Displays. Mit

den Registerkarten können Sie durch Antippen weitere Options-Seiten aufrufen, die wir in den nachfolgenden Kapiteln im Detail beschreiben.

Scope

Hier können Sie eine grafische Darstellung des aktuell wiedergegebenen Sounds auswählen. Tippen Sie auf **Source**, **Type** oder **Mode**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen.

	Scope	Pitch		MIDI			
	Sou	ırce	Ту	pe	Ма	ode	
	mmm		ทงกงกงกา	การการ		TVTVTVT	
2 3 4 5 6 7	8 L R	7 000 T	he Qu	antum	Manu	al 📖	er 1 Layer 2
						Seq.	Uni2

- **Source**: Hier können Sie das Signal festlegen, das in der grafischen Darstellung angezeigt wird. Es lassen sich einzelne Signale (wie z.B. Osc 1, 2 oder 3) auswählen oder Signale, die eine Komponente im Signalflusses des Quantum durchlaufen (Filter, Digital Former, VCA), ein Layer-Signal oder das Eingangssignal des externen Audioeingangs.
- **Type**: Sie können zwischen drei Arten der grafischen Darstellung wählen: *Scope* zeigt eine Echtzeit-Stereo-Wave-Darstellung (siehe auch **Mode**), *Analyzer (lin)* und *Analyzer (log)* zeigen einen Frequenzspektrum Analyzer an, entweder mit einer linearen (*lin*) oder einer logarithmische (*log*) Skalierung.
- Mode/FFT Size: Die Optionen hängen vom ausgewählten Type ab. Wenn Scope ausgewählt ist, können Sie zwischen One Shot (eine Momentaufnahme des entsprechenden Sounds), Pitch (eine fortlaufende Darstellung) und Continuous (ein Echtzeit-Wavemeter) wählen. Wenn ein anderer Type ausgewählt wird, bestimmt dieser die Blockgröße des FFT-Spektrumanalyzers (Fast Fourier Transformation). Höhere Blockgrößen bieten eine höhere Auflösung im unteren Frequenzbereich, verringern jedoch die Zeitkohärenz (Zeitgenauigkeit) im oberen Frequenzbereich die Informationen über höhere Frequenzen werden gemittelt.

Pitch

Hier können Sie Einstellungen zur Gesamtstimmung des Quantum vornehmen.

Der **PitchVar**-Parameter (im linken Displaybereich) gilt für alle Oszillatoren und alle Stimmen. Dieser Parameter ist identisch mit **PitchVar** im Oszillator Control-Display.

Die Pitch-Schaltfläche

- **Transpose**: Ermöglicht eine globale Tonhöhenverstimung für die gesamte Klangerzeugung. Gespielte Noten werden um entsprechende Anzahl der Halbtöne verschoben.
- **Master Tuning**: Bestimmt die Gesamtstimmung des Quantum in Hertz. Der hier angegebene Wert ist die Referenztonhöhe für die MIDI-Note A3. Die Standardeinstellung ist 440 Hz, wie sie auch normalerweise von den meisten Instrumenten verwendet wird.
- Scale: Öffnet ein Aufklapp-Menü mit einer breiten Auswahl von musikalischen Skalen – zum Beispiel *chromatic, major (Dur), minor (moll)* oder *lydian dominant.* Sie können auch User 1 - 8 wählen, um eine vom Anwender definierbare Stimmung auszuwählen. In diesem Fall steht eine zusätzliche Edit Tuning-Schaltfläche zur Verfügung.
- **Scale Root**: Bestimmt Grundton für die ausgewählte Skala. Dieser Parameter ist für die User-Skalen nicht verfügbar.

Die Edit Tuning-Schaltfläche

Ist mit der **Scale**-Option eine User-Skala ausgewählt, können Sie eine von Grund eine eigene Gleichstimmung erstel-

len, indem Sie die Anzahl der Schritte (**Steps**) und das Wiederholungsintervall (**Repeat Intervals**) angeben (z.B. 1200 Cents für eine Oktave oder andere Einstellungen).

Die folgenden Optionen stehen im User Tuning-Displayfenster zur Verfügung:

- New fügt eine neue Tuning-Tabelle mit definierbaren Schritten (Steps) und Wiederholungsintervallen (Repeat Intervals) hinzu.
- **Insert** fügt einen weiteren Tuning-Schritt nach dem aktuellen hinzu.
- **Delete** entfernt den aktuellen Tuning-Schritt.
- Wählen Sie den gewünschten Schritt zur Bearbeitung mit dem **Step**-Regler (oder dem Auswahl-Rad) aus.
- Nutzen Sie den **Step Type**-Regler, um einzelne Schritte zu bearbeiten, indem Sie mit dem **From Root**-Regler das **Interval** in Cent-Schritten oder ein numerisches Verhältnis (mit **Ratio**) wie z.B. 5/4 (mit den **Numerator/Denominator**-Reglern) angeben. Überspringen Sie bestimmte Tasten (mit **Skip**), um die Skalennoten über das Keyboard zu verteilen und damit eine bessere Spielbarkeit zu erreichen.

- Stimmen Sie einzelne Schritte, indem Sie eine Note halten und dann den **Intervall**-Regler entsprechend einstellenn.
- Die **Import/Export**-Option ermöglicht das Laden/Speichern einer User Tuning-Tabelle von und auf eine angeschlossene SD-Karte.
- Tippen Sie auf die **Pitch**-Schaltfläche, um zur normalen Pitch-Display-Seite zurückzukehren.
- Wenn eine User-Tabelle ausgewählt ist, kann sie mit den entsprechenden Schaltflächen umbenannt (Rename), kopiert (Copy) und eingefügt (Paste) werden.
- (!) Sie können auch Tuning-Tabellen importieren, die mit der kostenlosen Softwareanwendung Scala der Huygens-Fokker Foundation (http://www.huygensfokker.org/scala) erstellt wurden. Tippen Sie auf **Import Tuning**, um eine Scala-Datei (*.scl) von einer angeschlossenen SD-Karte zu importieren.

Tippen Sie auf **Keymap**, um die aktuellen Stimmungseinstellungen für jede Note nach MIDI-Tonhöhe und deren Intervall anzuzeigen. Verwenden Sie den **MIDI Note**-Regler (oder das Auswahl-Rad), um durch die Tuning-Liste zu blättern. Durch Tippen auf **Pitch** können Sie dieses Fenster wieder schließen.

Audio

Hier finden Sie einen einfachen und benutzerfreundlichen Audiorecorder, um alle Audiosignale vom Audioeingang oder den Ausgängen in den Flash-Speicher des Quantum aufzunehmen.

So nutzen Sie die Aufnahmefunktion:

 Tippen Sie zunächst auf die Schaltfläche rechts neben der Beschriftung Recording from, um das gewünschte Eingangssignal auszuwählen. Sie können entweder ein externes Audiosignal (In-

put) oder das Ausgangssignal von der *Main*- oder *Aux*-Ausgänge des Quantum aufnehmen. Im letzteren Fall ist keine weitere Signalverbindung erforderlich, da das Signal intern verlustfrei aufgenommen wird.

- 2) Tippen Sie auf **Record**, um den Aufnahmevorgang zu starten.
- 3) Tippen Sie auf **Stop**, um den Aufnahmevorgang zu beenden.
- Tippen Sie auf Play, um Ihre Aufnahme abzuspielen. Nutzen Sie den Playback Vol-Regler, um die Wiedergabelautstärke einzustellen.
- 5) Wenn Sie Ihre Aufnahme im Flash-Speicher des Quantum speichern möchten, tippen Sie auf **Save**, um das Save Audio-Display-Fenster zu öffnen.
- 6) Sie können den internen Flash-Speicher auch nach Audiodateien durchsuchen, indem Sie auf Load tippen. Hier können Sie dann eine Audiodatei aus dem Flash-Speicher oder einer angeschlossenen SD-Karte importieren.

MIDI

Hier können Sie Einstellungen zu den MIDI-Ein- und Ausgängen sowie zur Synchronisation vornehmen. Weiterhin können Sie hier auch die MIDI-Controller-Lern-Einstellungen verwalten. Tippen Sie auf die gewünschte Schaltfläche, um das entsprechende Optionen-Displayfenster zu öffnen.

	Scope Pitch	Audio	MIDI Setti	ngs System	
	Inputs	Outputs	Sync	Mappings	
	DIN In:	On	Chan 1	Chan 2	
	USB Controller In:	Off	Chan 1	Chan 2	
	USB Computer In:	Off	Chan 1	Chan 2	
	Local Keyboard:	On			
234567		he Qua	ntum Ma	nual Lay	r <mark>er 1</mark> Layer 2

Inputs

Hier können Sie Einstellungen bezüglich der MIDI-Eingänge vornehmen (DIN In, USB Controller In, USB Computer In):

- **Status**: Tippen Sie auf die erste Schaltfläche, um den entsprechenden MIDI-Eingangsport ein- oder auszuschalten.
- Layer 1/2 Input Channel: Tippen Sie auf die entsprechende Schaltfläche, um ein Aufklapp-Menü zu öffnen. Hier können Sie den gewünschten MIDI-Kanal auswählen, auf den Layer 1 und Layer 2 reagieren.
- **Local Keyboard**: Legt fest, ob eingehende MIDI-Daten vom Keyboard empfangen (*On*) oder ignoriert (*Off*) werden.

Outputs

Hier können Sie Einstellungen bezüglich der MIDI-Ausgänge vornehmen (DIN Out, USB Controller Out, USB Computer Out):

• **State**: Tippen Sie auf die erste Schaltfläche, um den entsprechenden MIDI-Ausgangsport ein- oder auszuschalten. Beachten Sie, dass der Arpeggiator und der

Step-Sequenzer MIDI-Noten für aktivierte MIDI-Ausgänge senden.

- Layer 1/2 Output Channel: Tippen Sie auf die entsprechende Schaltfläche, um ein Aufklapp-Menü zu öffnen. Hier können Sie den gewünschten MIDI-Kanal auswählen, auf dem Layer 1 und Layer 2 Daten senden.
- Send CC Mappings: Hier können Sie die zugeordneten MIDI-Control-Change-Daten (MIDI-CC) aktivieren, die beim Betätigen der Panel-Regler und -Taster gesendet werden.
- (!) Wenn Sie MIDI Controller in beide Richtungen geroutet haben, können Sie mit Ihrer DAW-Automationsfunktion den Quantum steuern.

Sync

Legt fest, wie der Quantum auf eingehende MIDI-Clock-Meldungen reagiert.

Tippen Sie auf **Sync Source**, um das Synchronisationsverhalten zu bestimmen:

• *Internal* bedeutet, dass der Quantum weder auf via MIDI eingehende Clock-Signale reagiert, noch diese selber sendet. Der Quantum synchronisiert sich hierbei nur zu der mit dem **Bpm**-Regler eingestellten Ge-

schwindigkeit. Diesen parameter finden Sie auch auf der Arpeggiator/Sequenzer-Displayseite.

• *External* bedeutet, dass sich der Quantum selbstständig zu eingehenden MIDI Clock-Informationen synchronisiert, die von einem externen Gerät (z.B. Sequenzer oder Drumcomputer) erzeugt werden.

Tippen Sie auf **Snap to Downbeat**, um die externe Synchronisation zu einem Downbeat zu aktivieren (*On*) oder zu deaktivieren (*Off*).

(!) Wenn Sie die Taster **Global** und **Layer** gleichzeitig drücken, schalten Sie zwischen dem internen und dem externen Synchronisationsmodus um.

Mappings

Öffnet eine Seite mit allen zugeordneten MIDI-Control-Change-Daten. Diese Seite gibt Ihnen einen Überblick über alle verwendeten MIDI-Mappings. Sie können hier Einstellungen einrichten oder ändern.

Verwenden Sie den **MIDI CC**-Regler oder Ihren Finger, um durch die Liste zu blättern und den gewünschten MIDI-Controller auszuwählen.

Unterhalb der Liste befinden sich weitere Schaltflächen zum Bearbeiten von MIDI CCs:

- Set: Tippen Sie auf Set, um das Set Mapping-Lernfenster zu öffnen. Drehen Sie anschliessend an einem Parameter-Regler oder drücken Sie einen Taster, um dessen Funktionen einem MIDI CC zuzuweisen. Folgen Sie den Anweisungen auf dem Touchscreen-Display.
- **Clear:** Löscht die aktuell ausgewählte MIDI-Controller-Zuordnung.
- **Clear All:** Löscht nach einer Bestätigung alle MIDI-Controller-Zuordnungen.
- **Used/All:** Wechselt zwischen den tatsächliche verwendeten MIDI-Controller-Zuordnungen und der vollständigen Listendarstellung.
- Load: Lädt eine MIDI-Controller-Zuordnung aus dem Flash-Speicher. Aktuelle MIDI-Controller-Zuordnungen werden dabei überschrieben.
- **Save:** Speichert die aktuelle MIDI-Controller-Zuordnung im Flash-Speicher des Quantum.

Settings

Hier können Sie allgemeine Einstellungen für die Drehregler, die Anzeige und weitere Optionen vornehmen.

Die Settings-Displayseite mit der ausgewählten Colors-Seite

Die General-Seite

• Load at Startup: Legt fest, welches Soundprogramm der Quantum nach dem Hochfahren laden soll: Sie können zwischen dem zuletzt geladenen Preset (*Last Loaded*), einem *Init Sound*-Programm und dem *Patch 0* (Soundprogramm-Nummer 0000) wählen.

- **Display Brightness**: Regelt die Helligkeit des Touchscreen-Displays von 0 bis 100%.
- **LED Brightness**: Regelt die Helligkeit aller LEDs von 0 bis 100%.

Die Edit-Seite

- **Pot Mode**: Stellt das Verhalten der Potentiometer (nicht der Endlos-Regler) ein. *Immediate* bedeutet, dass ein Parameterwert sofort zur entsprechenden Einstellposition springt. *Pick-Up* bedeutet, dass Sie den Regler solange drehen müssen, bis der aktuelle Parameterwert erreicht ist und "abgeholt" wird. *Catch* funktioniert fast genauso wie *Pick-Up*, der aktuelle Wert ändert sich jedoch beim Drehen – wenn die Reglerposition mit dem Wert übereinstimmt.
- **Touch Mode**: Steuert das Verhalten von Wertänderungen mit dem Touch-Display, insbesondere bei der Bearbeitung von Schiebereglern und Fadern. *Direct* bedeutet, dass der Wert direkt zu dem angetippten Wert springt, während bei *Relative* ein Wert vor dem Ändern "überfahren" werden muss.
- **Switch Screens**: Hier können Sie festlegen, ob das Touchscreen-Display die entsprechende Parameterseite automatisch öffnen soll, wenn Sie Soundparameter

in einem Panel-Bereich bearbeiten (*At Edit*) oder nicht (*Off*).

• Edit Popup Time: Hier können Sie festlegen, wie lange ein Aufklapp-Fenster/-Menü im Touchscreen angezeigt wird. Die Standardeinstellung beträgt *2.0 sec.*

Die Audio-Seite

Output Routing ermöglicht eine globale Überschreibung (*Global*) der Main/Aux-Ausgangseinstellungen für Patches. Im Layer-Fenster wird durch die Anzeige von **Global Send Main** darauf hingewiesen, dass die globale Überschreibung aktiviert ist. Auf diese Weise können Sie jedem Layer unabhängig von den Patch-Einstellungen bestimmte Ausgänge global zuweisen und diese konstant beibehalten. Die Standardeinstellung ist *Patch*.

Die Colors-Seite

Hier können Sie die LEDs für die Hintergrundbeleuchtung für alle Taster ein- und ausschalten und ein persönliches Farbschema für die Regler festlegen.

• **Button Backlight**: Hier können Sie die LEDs für die Hintergrundbeleuchtung aller Taster ein- und ausschalten. Wir empfehlen, diese Einstellung bei dunklem Umgebungslicht zu aktivieren.

• **Custom Section Color List**: Hier können Sie für jeden Parameterbereich eine eigene LED-Farbe definieren, z.B. für die LFOs oder den Resonator. Wählen Sie erst den gewünschten Bereich mit **Item** oder durch Antippen und dann mit **Color** die LED-Farbe. Sie können Farbeinstellungen speichern (**Save**) und laden (**Load**) oder die komplette Liste auf die Standardeinstellung (**Reset**) zurücksetzen.

System

Hier finden Sie Informationen zum aktuellen Betriebssystem und zu Ihrer Seriennummer (UID) sowie die Laufzeit des Geräts. Hier können Sie auch die Betriebssystemsoftware aktualisieren und das Keyboard, die Analog-Filter und die Spielräder kalibrieren.

		Pitch		MIDI		System	
	Info	С	alibrate				
	Veloci	ty Sensitivity		Medium			
	Wheels 8	AT Cor	ntrol Pedal	Filters	; [Display	
1 2 3 4 5 6 7	8 L R (000 T	he Qu	antum	Manu	al 🗖	er 1 Laver 2
						Seq	Uni2

• Info Tab: Tippen Sie auf diese Schaltfläche, um die Info-Anzeigeseite zu öffnen. Hier können Sie die Betriebssystemsoftware aktualisieren (Update). Lesen Sie mehr auf der folgenden Seite. Sie können auch die Flash Panel-Schaltfläche verwenden, um nur das Panel zu aktualisieren. Tippen Sie auf **Support Log**, um eine Protokolldatei auf einer angeschlossenen SD-Karte zu speichern, falls Sie Unterstützung oder Service für Ihren Quantum benötigen.

• **Calibrate Tab**: Tippen Sie auf diese Schaltfläche, um die Kalibrierungsanzeigeseite zu öffnen. Hier können Sie das Keyboard und die Spielräder (**Wheels & AT**), angeschlossene Pedale (**Control Pedal**) und die analogen Filter (**Filter**) kalibrieren. Bitte folgen Sie den Anweisungen im Dispaly. Sie können die Anschlagempfindlichkeit (**Velocity Sensitivity**) für die Quantum-Tastatur von *Soft* bis *Hard* einstellen. Die Grundeinstellung ist Medium. Tippen Sie auf **Display**, um die Anzeige horizontal und vertikal zu verschieben.

Aktualisieren des Betriebssystems

Der Quantum bietet eine wartungsfreundliche Funktion, die es ermöglicht, die interne Betriebssoftware ohne Austausch von Teilen zu aktualisieren.

Alle Software-Updates kommen in Form einer .bin Datei, welche direkt auf eine SD-Karte kopiert werden kann. Die effektivste Möglichkeit, um diese Datei zu erhalten, ist ein Download von unserer Internet-Webseite:

http://www.waldorfmusic.com/quantum

Achten Sie darauf, folgende Bestandteile zu laden:

• quantum.update.bin

So aktualisieren Sie die Systemsoftware des Quantum:

- Kopieren Sie die .bin-Datei ins das Hauptverzeichnis einer geeigneten SD-Karte.
- Führen Sie diese SD-Karte in den SD-Card-Slot des Quantum ein.
- Drücken Sie den **Global**-Taster, um die Global-Seite aufzurufen.
- Tippen Sie im Display auf den **System**-Reiter, um die System-Unterseite zu öffnen. Tippen Sie dort auf den **Info**-Reiter.

- Tippen Sie auf die **Update**-Schaltfläche und folgenden den Anweisungen im Display.
- Nach Installation des Update-Files schreibt der Quantum dieses automatisch in seinen Flash-Speicher.
- Warten Sie, bis der Vorgang abgeschlossen ist. Wenn die Aktualisierung erfolgreich war, fährt der Quantum automatisch herunter und startet dann neu.
- Schalten Sie während der Updateprozedur auf keinen Fall den Quantum aus. Als Folge kann ein völliger Datenverlust auftreten, so dass der Quantum nicht mehr funktionsfähig ist!

Laden & Editieren von Samples

Wie Sie bereits wissen, kann der Quantum Samples mit dem Particle-Generator oder als Anreger für den Resonator wiedergeben.

Im Lieferumfang des Quantum finden Sie eine Vielzahl von Audio-Samples. Sie können jedoch auch eigene Samples verwenden, um interessante Sounds zu erzeugen.

- Der Quantum ist in der Lage, WAV- und AIFF/AIFC-Samples mit Bitraten von 8 bis 32 (einschließlich Floating-Point-Formate) und allen gängigen Sample-Raten zu laden. Wir empfehlen den Einsatz von 44.1 kHz als Samplerate. Andernfalls müssen Sie den Pitch-Parameter verwenden, um die Tonhöhe der Samples entsprechend anzupassen. Übrigens: Sample-Loops werden von Quantum erkannt.
- Es werden Stereo-Samples unterstützt. Sie können aber auch Mono-Samples und Mehrkanaldateien verwenden. Im letzteren Fall werden nur die Kanäle 1 und 2 genutzt.

Es gibt drei Möglichkeiten, Samples für die weitere Verwendung zu laden/importieren:

- **Factory-Samples**: Sie können alle Factory-Samples laden und bearbeiten. Dies ist der einfachste Weg, um die Sample-Fähigkeiten Ihres Quantum zu erkunden.
- **Eigene Audio-Samples importieren**: Sie können eigene Samples von einer angeschlossenen SD-Karte importieren und in den Flash-Speicher des Quantum laden. Hier werden die Samples dauerhaft gespeichert und können zur weiteren Bearbeitung verwendet werden.
- Eigene Audio-Samples aufnehmen: Sie können den Audio-Recorder auf der Global-Seite nutzen, um Samples über den externen Audio-Eingang aufzunehmen oder die Main/Aux-Ausgänge intern absampeln. Aufnahmen werden im Flash-Speicher des Quantum gespeichert. Hier können sie zum Laden und können zur weiteren Bearbeitung verwendet werden.

Sie können Samples innerhalb des Quantum mit den folgenden Oszillatormodellen verwenden:

Particle Generator: Ein oder mehrere Samples können für die normale oder granulare Wiedergabe verwendet werden. Weitere Informationen zum Partikel Generator finden Sie auf Seite 51. Um ein Sample zu verwenden, tippen Sie einfach auf die Particle-Schaltfläche auf der Particle Generator-Display-Seite. Die Sample-Displayseite öffnet sich dann.

• **Resonator:** Ein oder mehrere Samples können als Exciter für den Resonator verwendet werden. Weitere Informationen zum Resonator finden Sie auf Seite 63. Um ein Sample zu verwenden, tippen Sie auf die **Resonator**-Schaltfläche auf der Resonator-Displayseite. Die **Sample**-Display-Seite öffnet sich dann.

Die Sample Display-Seite

Hier können Sie Samples laden, verwalten und bearbeiten. Um die Sample-Display-Seite zu schließen, tippen Sie einfach auf die Schaltfläche **Samples**.

		Tim	Timbre		Particle			
Selected Sample	Particle	Edi	it	Presets		Pitch		
2	File						F#/Gb1 + Normal	U.Uc Set
	/DigitaMetal/BrB A-1	-00-036.wav	0-127	0-127	36.00	0.00 dB		
	/DigitaMetal/BrB A-1	-00-042.wav	0-127	0-127	42.00	0.00 dB		
From Velo							From Not	te
0							C-2	
								Set
	samples/KApro Bells/Digita	5.915 secs						
To Velo		Witten Pullinger					To Note	
127	Granular	Round Robin	90 d	eg	0.00) dB	G8	
	Mode	Rule	Stereo V	Nidth	Overa	ll Gain		Set
0000 The Quantum Manual								iyer 2

• Für den Umgang mit den folgenden Parametern empfehlen wir das Laden eines Samples. Weitere Informationen finden Sie im Kapitel "Die Action-Schaltfläche".

Die Display-Darstellung

Wurde ein Sample geladen, zeigt das zentrale Display eine grafische Wellenformdarstellung dieses Samples. Wenn mehr als ein Sample geladen wurde, zeigt das Display zusätzlich auch eine Sample-Dateiliste. Das aktuell ausgewählte Sample wird hier hervorgehoben.

Selected Sample

Wenn mehr als ein Sample geladen ist, können Sie mit diesem Parameter-Regler das gewünschte Sample für die weitere Bearbeitung auswählen. Sie können auch auf die gewünschte Sampledatei in der Anzeigeliste tippen, um diese auszuwählen.

Lesen Sie mehr über das Hinzufügen von Samples später im weiteren Verlauf dieses Kapitels.

From Velo / To Velo

Hier bestimmen Sie den Anschlagstärkenbereich (Velocity Range) des aktuell ausgewählten Samples. Sie können eine

minimale Velocity (**From Velo**) und einen maximalen Velocity-Wert (**To Velo**) für das Triggern einstellen. Somit bestimmt die eingehende Anschlagstärke, welches Sample gespielt wird. Mit dieser Funktion können Sie gestackte Samples erstellen, die auf unterschiedliche Velocities reagieren.

Pitch

Bestimmt die Tonhöhe des aktuell ausgewählten Samples. Mit diesem Parameter können Sie Samples stimmen, die nicht mit der gewünschten Tonhöhe übereinstimmen.

Tippen Sie auf **Pitch**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Pitch-Wertänderung beträgt 10.0 cents.
- Fine: Die Pitch-Wertänderung beträgt 1.0 cents
- Super Fine: Die Pitch-Wertänderung beträgt 0.1 cents.
- Set From Keys: Drücken Sie eine Taste auf Ihrem Keyboard, um die entsprechende Tonhöhe einzustellen.

From Note / To Note

Hier bestimmen Sie den Tastaturbereich des aktuell ausgewählten Samples. Sie können eine untere Taste (**From** **Note**) und eine obere Taste (**To Note**) einrichten. Verwenden Sie diese Funktion, um Multi-Samples zu erstellen, bei denen jedes Sample einen eigenen Wiedergabebereich besitzt.

Tippen Sie auf **From Note** oder **To Note**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

• **Set From Keys**: Drücken Sie eine Taste auf Ihrem Keyboard, um die entsprechende Note einzustellen.

Mode (nur für den Particle-Generator)

Legt den Wiedergabemodus aller geladenen Samples fest.

- Normal: Spielt das/die geladene(n) Sample(s) normal ab. Wenn nur ein Sample geladen ist, wird dieses automatisch über die gesamte Tastatur angeordnet. Das beeinflusst auch die ursprüngliche Tonhöhe und Dauer. Wenn dieser Modus ausgewählt ist, sind einige Parameter des Particle Generators nicht verfügbar.
- **Granular**: Nutzt die Partikel-Engine des Quantum für die granulare Wiedergabe.
- Live Granular: Nutzt den Audio-Eingang des Quantum für eine Echtzeit Granular-Transformation. Stellen Sie sicher, dass der Audioeingang auf der Layer-Seite (Input Volume, Input Routing) entsprechend eingerichtet ist.

Tippen Sie auf **Mode**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt diesen Parameter auf die Standardeinstellung.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Rule (nur für den Particle-Generator)

Legt das Wiedergabeverhalten fest, wenn mehr als ein Sample geladen ist.

- **Round Robin**: Die Samples werden nacheinander vom Anfang der Sample-Liste bis zum Ende abgespielt und dann wiederholt.
- **Reverse Robin**: Die Samples werden nacheinander vom Ende der Sample-Liste bis zum Anfang abgespielt und dann wiederholt.
- **Ping Pong**: Die Samples werden nacheinander vom Anfang der Sample-Liste bis zum Ende abgespielt, dann vom Ende zum Anfang und so weiter.

- **Random Robin**: Die Samples werden nach dem Zufallsprinzip wiederholt. Kein Sample wird dabei zweimal hintereinander abgespielt.
- **Random**: Die Samples werden nach dem Zufallsprinzip wiederholt. Samples können dabei zweimal oder mehrfach hintereinander abgespielt werden.

Tippen Sie auf **Rule**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt diesen Parameter auf die Standardeinstellung.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Stereo Width (nur für den Particle-Generator)

Der Quantum kann Mono- und Stereo-Samples abspielen. Stereo-Samples besitzen manchmal eine Stereobreite, die nicht gewünscht ist. Verwenden Sie **Stereo Width**, um die Stereobreite aller Samples nach Wunsch anzupassen.

Tippen Sie auf **Stereo Width**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt diesen Parameter auf die Standardeinstellung.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Overall Gain (nur für den Particle-Generator)

Bestimmt die Gesamtverstärkung aller geladenen Samples. Wenn Sie den Pegel eines einzelnen Samples ändern möchten, verwenden Sie bitte die Option **Sample Gain** auf der **Edit**-Seite.

Tippen Sie auf **Overall Gain**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt diesen Parameter auf die Standardeinstellung.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Die Action-Schaltfläche

Hier laden und verwalten Sie Ihre Samples. Tippen Sie auf diese Schaltfläche, um ein Aufklapp-Menü mit weiteren Optionen zu öffnen:

- Add: Öffnet das "Add Samples"-Fenster. Hier haben Sie vollen Zugriff auf alle Samples im Flash-Speicher des Qauntum. Sie können ein Sample auswählen, indem Sie durch die Verzeichnisse navigieren. Durch Tippen auf die entsprechende Schaltfläche unter dem Fenster können Sie weitere Optionen ausführen:
 - New Dir: Erstellt einen neuen Verzeichnisordner. Der Verzeichnispfad hängt von der ausgewählten Zeile ab. Sie müssen den neuen Ordner benennen.
 - **Delete**: Löscht den ausgewählten Ordner bzw. das ausgewählte Sample nach einer Bestätigung.
 - **Rename**: Benennt den ausgewählten Ordner bzw. das Sample um.
 - **Move**: Verschiebt das ausgewählte Sample bzw. den Ordner. Bei der Ausführung wird der Ordner bzw. das Sample in die Zwischenablage kopiert. Verwenden Sie **Insert**, um es an den gewünschten Ort zu verschieben.
 - **Play**: Spielt das ausgewählte Sample ab.

- **Cancel**: Schließt das "Add Sample"-Fenster. Dabei wird keine weiteren Aktion druchgeführt.
- **Add**: Fügt das ausgewählte Sample dem Particle Generator oder dem Resonator hinzu.

Add Samples							
Samples samples/KApro Bells/DigitaMetal/BrB A-1-00-042.wav							
AW.wav		KApro Analog FX ⊳	Bell Drum 2	Þ	BrB A-1-00-036.wav		
recordings		KApro Bells 🛛 🕞	Bellishi	⊳	BrB A-1-00-042.wav		
samples	⊳	KApro Butterweicb	Breathy Bell	⊳	BrB A-1-00-048.wav		
		KApro Evolutions >	Caribell	⊳	BrB A-1-00-054.wav		
		KApro Klavier 🕞	DigitaMetal	⊳	BrB A-1-00-060.wav		
		KApro Metal FX 🕞	Fabulous Chin	nes ⊳			
		KApro Pads 🕞	Fabulous Chin	nes 2>			
		KApro Perc. Pads⊳	Gong A	⊳			
		KApro Percussion>	Gong B	⊳			
New Dir Delete Rename Move Play Cancel Add							
0000 The Quantum Manual Layer 1 Layer 2 See, Uni2							

Das Add Samples-Fenster

- **Remove**: Entfernt das ausgewählte Sample aus der Liste.
- **Auto-Map**: Wenn mehrere Samples geladen sind, ordnet **Auto-Map** die Samples auf der Keyboard-Tastatur

an. Das bedeutet, dass der Tastaturbereich (**From Note** und **To Note**) automatisch eingestellt wird.

- Load Map: Lädt ein Sample-Mapping aus dem Flash-Speicher.
- **Save Map**: Samples und ihre Einstellungen können als Map gespeichert werden. Tippen Sie auf **Save Map** speichern, um den Speichervorgang auszuführen.
- Clear Map: Löscht eine Map und deren Einstellungen.
- **Import**: Importiert ein Sample von einer angeschlossenen SD-Karte in den Flash-Speicher des Quantum. Anschliessend kann das Sample mit der **Add**-Funktion geladen werden.
- **Reload**: Wenn ein oder mehrere Samples nicht richtig funktionieren, kann die **Reload**-Funktion hilfreich sein, um das/die Sample(s) erneut zu laden.

Die Edit-Schaltfläche

Tippen Sie auf die **Edit**-Schaltfläche, um den Sample-Edit-Modus aufzurufen. Die Displaydarstellung ändert sich in einigen Bereichen. Im Sample-Edit-Modus können Sie Bearbeitungen am Anfang und Ende des Samples sowie Loop-Einstellungen vornehmen.

Die Display-Darstellung

Das zentrale Display zeigt eine grafische Wellenformdarstellung des aktuell ausgewählten Samples und einige Marker. Wenn mehr als ein Sample geladen wurde, zeigt das Display zusätzlich auch eine Sample-Dateiliste. Das aktuell ausgewählte Sample wird hier hervorgehoben.

Selected Sample

Wenn mehr als ein Sample geladen ist, können Sie mit diesem Parameter-Regler das gewünschte Sample für die weitere Bearbeitung auswählen. Sie können auch auf die gewünschte Sampledatei in der Anzeigeliste tippen, um diese auszuwählen.

Sample Start / Sample End

Hier legen Sie die Startposition (**Sample Start**) und die Endposition (**Sample End**) des aktuell ausgewählten Samples fest. Verwenden Sie diese Funktion, um die Samplelänge an Ihre Bedürfnisse anzupassen. In der Wellenformdarstellung zeigen zwei grüne Marker den Start und das Ende des Samples.

Tippen Sie auf **Sample Start** oder **Sample End**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Wertänderung ist normal.
- Fine: Die Wertänderung ist feiner.
- Super Fine: Die Wertänderung ist sehr fein.

Pitch

Bestimmt die Tonhöhe des aktuell ausgewählten Samples. Mit diesem Parameter können Sie Samples stimmen, die nicht mit der gewünschten Tonhöhe übereinstimmen.

Tippen Sie auf **Pitch**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Pitch-Wertänderung beträgt 10.0 cents.
- Fine: Die Pitch-Wertänderung beträgt 1.0 cents
- **Super Fine**: Die Pitch-Wertänderung beträgt 0.1 cents.
- Set From Keys: Drücken Sie eine Taste auf Ihrem Keyboard, um die entsprechende Tonhöhe einzustellen.

Loop Start/ Loop End

Wenn **Loop Mode** auf *On* eingestellt ist, können Sie einen **Loop-Start** und ein **Loop-Ende** definieren. In der Wellenformdarstellung zeigen zwei gelbe Marker den Start und das Ende des Loops.

Tippen Sie auf **Loop Start** oder **Loop End**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- Normal: Die Wertänderung ist normal.
- **Fine**: Die Wertänderung ist feiner.
- Super Fine: Die Wertänderung ist sehr fein.

Mode (nur für den Particle-Generator)

Legt den Wiedergabemodus aller geladenen Samples fest.

- Normal: Spielt das/die geladene(n) Sample(s) normal ab. Wenn nur ein Sample geladen ist, wird dieses automatisch über die gesamte Tastatur angeordnet. Das beeinflusst auch die ursprüngliche Tonhöhe und Dauer. Wenn dieser Modus ausgewählt ist, sind einige Parameter des Particle Generators nicht verfügbar.
- **Granular**: Nutzt die Partikel-Engine des Quantum für die granulare Wiedergabe.
- Live Granular: utzt den Audio-Eingang des Quantum für eine Echtzeit Granular-Transformation. Stellen Sie sicher, dass der Audioeingang auf der Layer-Seite (Input Volume, Input Routing) entsprechend eingerichtet ist.

Tippen Sie auf **Mode**, um ein Aufklapp-Menü mit weiteren Einstellungen zu öffnen:

- **Set Default**: Stellt diesen Parameter auf die Standardeinstellung.
- Set Last Loaded: Setzt den Parameter auf den urspünglichen Wert des aktuellen Sound-Patches zurück.
- **MIDI Learn CC**: Aktiviert die MIDI-Learn-Funktion, die diesem Parameter eingehende MIDI-Controller-Daten zuweist.

Loop Mode

Bestimmt, ob der Sample-Loop aktiv ist (On) oder nicht (Off).

Pan (nur für den Particle-Generator)

Legt das Panorama für das aktuell ausgewählte Sample fest.

Sample Gain

Bestimmt den Pegel des aktuell ausgewählten Samples.

Presets

Tippen Sie auf die **Presets**-Schaltfläche, um ein Aufklapp-Fenster zum Laden, Speichern und Verwalten von Sample-Einstellungen zu öffnen. Die Erklärung zu allen Optionen finden Sie im **Presets**-Kapitel des Wavetable-Oszillators.

Anhang

Über die Wavetable-Synthese

Ein Teil der Tonerzeugung des Quantum basiert auf der Wavetable-Synthese. Um das System der Wavetable-Tonerzeugung anschaulich zu erklären, folgt zunächst ein kurzer Überblick:

Eine Wavetable ist eine Tabelle mit einzelnen Wellenformen. Jede Wellenform zeichnet sich durch einen eigenen Klangcharakter aus. Das besondere an der Wavetable-Tonerzeugung ist jedoch die Möglichkeit, nicht nur eine einzelne Wellenform pro Oszillator abzuspielen, sondern mit Hilfe unterschiedlicher Modulationen auf verschiedene Wellenformen zuzugreifen oder im Verlauf des Klanges sogenannte Wellendurchläufe zu erzeugen. So kann ein Klangbild entstehen, welches in keiner Weise mit Sample-Playern oder ähnlichem zu erzeugen wäre.

Die Möglichkeiten dieses Prinzips sind immens. Um einige Beispiele zu nennen:

- Jede Note des Keyboards kann auf eine andere Wave der Wavetable zugreifen.
- Der Travel-Parameter ermöglicht zyklisches Durchfahren aller Waves einer Wavetable.

- Ein LFO moduliert die Position innerhalb der Wavetable. Hierdurch können je nach Wavetable subtile bis drastische Änderungen des Klangspektrums erzeugt werden.
- Beliebige Controller (wie z.B. das Modulationsrad) ändern die Position innerhalb der Wavetable. Wenn Sie einen Akkord spielen und am Modulationsrad drehen, werden die Waves jeder Note gleichförmig zueinander geändert.

Prägen Sie sich den folgenden Satz gut ein, er beschreibt die Essenz der Wavetable-Synthese:

() Eine Wavetable ist eine Tabelle mit Waves, die Sie beliebig durchfahren können.

Zeitliche Modulation der Waves

Untenstehende Grafik zeigt eine Wavetable mit 60 Waves und einige ihrer enthaltenen Waves von Position 0 bis 59 auf der senkrechten Achse. Die waagerechte Achse repräsentiert das resultierende Audiosignal und die schräge Linie die Attack-Phase über den zeitlichen Verlauf.

Sobald Sie eine Note spielen bewegt sich die Hüllkurve durch die Wavetable-Positionen, während sie dabei unterschiedliche Waves erzeugt.

Die Decay-Phase würde diese Waves in umgekehrter Richtung durchfahren, während bei Erreichen der Sustain-Phase eine bestimmte Wave gehalten würde. Sobald Sie die Note loslassen, bewegt sich die Hüllkurve zu Null.

Viele Wavetables sind so angelegt, dass sie bei einer dumpfen Wave auf Position 0 beginnen und durch immer brillanter werdende Waves gehen. Dadurch verhalten sie sich ähnlich wie ein Tiefpassfilter, so dass sie komfortabel mit einer Hüllkurve gesteuert werden können. Wenn Attack auf 0 und Decay auf einem mittleren Wert steht, erhalten Sie einen perkussiven Klang, wenn Sie Attack erhöhen, beginnt der Klang zunehmend weicher.

Sie können außerdem den LFO zur Modulation der Wavetable-Position verwenden, um abhängig von der verwendeten LFO-Wellenform entweder eine vor- und rückwärts laufende Wave-Durchfahrt (Triangle), eine solche nur in eine Richtung, gefolgt von einem harten Rücksprung (Saw Up oder Saw Down) oder harte Wechsel zwischen zwei Waves (Square) zu erhalten.

Überschreiten der Waves einer Wavetable

Selbstverständlich können Sie Hüllkurven- und Keytrack-Modulationen kombinieren oder gar weitere Modulationen hinzufügen. All diese Modulationen werden zusammengerechnet, wodurch die Grenzen der Wavetable über- oder unterschritten werden können. Wenn das passiert, werden Waves zyklisch wiederholt.

Einführung in die Waveform-Oszillatoren

Der Oszillator ist die eigentliche klangerzeugende Komponente. Er liefert das Signal, welches anschließend von den restlichen Bausteinen des Synthesizers verändert wird.

In den frühen Tagen der elektronischen Klangsynthese entdeckten Ingenieure, dass die meisten Klänge von akustischen Instrumenten mit abstrakten elektronischen Wellenformen nachgebildet werden konnten. Nicht dass es die ersten Menschen waren, die dies herausfanden, aber sie waren die ersten, die diese Wellenformen durch elektrische Schaltkreise erzeugten, in ein Gehäuse packten und das ganze als Musikinstrument kommerziell vermarkteten. Was letztendlich in die ersten Synthesizer "hineingepackt" wurden, waren die allseits bekannten Wellenformen Sägezahn (Sawtooth) und Rechteck (Square).

Dies ist sicherlich nur eine kleine Auswahl aus der nahezu unendlichen Vielfalt an erzeugbaren Wellen, trotzdem beinhaltet der Waldorf Quantum genau diese klassischen Wellenformen.

Die Sinus-Wellenform

Die Sinuswelle (Sine) ist der reinste Ton, der erzeugt werden kann. Sie basiert auf nur einer Harmonischen und besitzt keine Obertöne. Die folgende Grafik zeigt eine Sinuswelle und ihr Frequenzspektrum:

Kein akustisches Musikinstrument kann eine reine Sinuswelle erzeugen, allein der Klang eines Dudelsacks kommt ihr erstaunlich nahe, allerdings nicht, wenn man ihn bläst, wie es dessen Bedienungsanleitung für gewöhnlich vorsieht. Aus diesem Grund klingt eine Sinuswelle für unser Ohr auch etwas unnatürlich. Trotzdem kann die Sinuswelle eine interessante Bereicherung bei der Erzeugung bestimmter harmonischer Frequenzen sein, während andere Oszillatoren gleichzeitig komplexere Wellenformen spielen. Unentbehrlich ist sie als FM-Quelle bei der Frequenzmodulation.

Sinuswellen sind die Grundlage jeder anderen Wellenform. Es lässt sich nämlich jede Wellenform als die Summe von wenigen bis vielen Sinusschwingungen mit unterschiedlichen Frequenzen und Lautstärken definieren. Diese Sinuswellen werden als so genannte Teiltöne oder *Partiale* bezeichnet. Bei den meisten Wellenformen ist die Partiale mit der tiefsten Frequenz ausschlaggebend für die Tonhöhe des gesamten Klanges, weshalb dieser Teilton auch als *Grundton* bezeichnet wird. Alle anderen Teiltöne heißen *Obertöne*, weil sie oberhalb der Frequenz des Grundtons liegen. Die zweite Partiale ist demnach der erste Oberton.

Periodische Wellenformen wie auch die innerhalb des Blofeld bestehen aus Obertönen, die in ganzzahligen Vielfachen der Frequenz des Grundtones schwingen; also mit der zweifachen, der dreifachen usw. Frequenz. Diese Obertöne werden *Harmonische* genannt, da ihre Frequenzen aus einem harmonischen Vielfachen des Grund- tones bestehen.

Alles klar bis hierhin? Fassen wir noch mal die Definition einer periodischen Wellenform zusammen: eine periodische Wellenform wie Sägezahn oder Rechteck etc. be- steht aus harmonischen Teiltönen (Partialen). Der Teilton mit der tiefsten Frequenz, der Grundton, bestimmt die Tonhöhe. Alle anderen Teiltöne werden Obertöne genannt.

Die Sägezahn-Wellenform

Die Sägezahnwelle (engl. Sawtooth) ist die bekannteste Synthesizer-Wellenform. Sie enthält alle Obertöne, wobei deren Lautstärken sich in einem bestimmten Verhältnis verringern. Das bedeutet, dass die erste Partiale (der Grundton) die volle Lautstärke hat, die zweite Partiale (der erste Oberton) die Hälfte, die dritte Partiale nur noch ein Drittel usw. Die folgenden Abbildungen zeigen, wie die verschiedenen Harmonischen letztendlich zur Sägezahnwelle führen:

Additive Komponenten der Sägezahn-Wellenform

Ursprünglich war die Sägezahnwelle innerhalb eines Synthesizers zur Erzeugung von Streicher- und Bläserklängen gedacht. Man kann die Ähnlichkeit des akustischen Vorbildes gut am Beispiel einer Violine erklären. Der Geigenbogen streicht in einer Richtung langsam über eine Saite. Bis zu einem bestimmten Punkt wird die Saite dabei "mitgezogen" und schnellt dann in Richtung ihrer Ausgangsposition zurück. Aber der Bogen erfasst die Saite weiter und zieht sie wieder mit sich. Das Ergebnis ist eine Welle, die Ähnlichkeit mit den Zähnen einer Säge hat – eben die Sägezahnwelle. Ähnliches gilt für ein Blasinstrument. Die Saiten sind in diesem Fall die menschlichen Lippen, der Bogen ist die Luft. Die Lippen bewegen sich durch den Druck der Luft bis zu einem bestimmten Punkt und schnellen dann abrupt zurück in ihre Ausgangsposition.

Die Rechteck-Wellenform

Die Rechteckwelle (engl. Square) ist eine spezielle Wellenform, die aus einer Pulswelle mit 50%iger Pulsweite resultiert. Das bedeutet, dass die positive Auslenkung gleich der negativen Auslenkung der Welle ist (siehe Abbildung unten). Eine Pulswelle kann natürlich auch andere Pulsweiten besitzen, aber dazu später. Ab jetzt behandeln wir die Rechteckwelle als eigenständige Wellenform. Die Rechteckwelle besitzt nur ungerade Harmonische, wobei deren Lautstärken in einem bestimmten Verhältnis abnehmen. Die erste Harmonische hat noch die volle Lautstärke, die dritte nur noch ein Drittel, die Fünfte ein Fünftel usw. Die folgenden Abbildungen zeigen, wie die verschiedenen Harmonischen letztendlich zur Rechteckwelle führen:

Additive Komponenten einer Rechteckwelle mit 50%iger Pulsweite
Ursprünglich war die Rechteckwelle innerhalb eines Synthesizers zur Erzeugung von Holzbläsern und Akkordeons gedacht. Sie enthalten nämlich einen Hohlraum, der ein bestimmtes Luftvolumen fassen kann. Der Spieler "schickt" nun Luft in dieses System und bringt es damit zum Schwingen. Diese Schwingung erfolgt symmetrisch und erzeugt so einen hohlen, nasalen Klang.

Die Puls-Wellenform

Die Pulswelle (Pulse) ist die ergiebigste Wellenform innerhalb eines Synthesizers, da ihr Gehalt an Harmonischen in Echtzeit verändert werden kann. Dies wird durch Veränderung der Breite der oberen und unteren Anteile der Wellenform erreicht. Diese Anteile werden Puls genannt, daher auch der Begriff Pulsbreite. Die Breite des ersten Pulses wird zur Unterscheidung verschiedener Pulswellen benutzt und wird in Prozent angegeben. Die folgenden Abbildungen zeigen einige Pulswellen mit verschiedenen Pulsweiten:

Sie bemerken sicherlich, dass die unteren Bestandteile der Welle bei einer Pulsweite kleiner als 50% näher an der Mittelachse liegen. Das resultiert daher, dass die Energie des breiteren Pulses größer ist als die des schmaleren. Würde dieser Effekt nicht von der Wellenform kompensiert, hätte das Signal einen unerwünschten so genannten *DC Offset*, also eine Abweichung zur Mittelachse.

Wie Sie sicherlich schon weiter oben gelesen haben, ist eine Pulswelle mit 50%iger Pulsweite (Rechteckwelle) ein Sonderfall. Sie hat einen nahezu punktsymmetrischen Gehalt an Harmonischen, da alle anderen Pulsweiten Frequenzspitzen oder -löcher erzeugen. Ein anderer Sonderfall ist eine Pulswelle mit extrem kleiner Pulsweite unter einem Prozent, wie in der Abbildung dargestellt. Ein unendlich kleiner Puls erzeugt ein Klangspektrum, das alle Harmonischen mit der gleichen Lautstärke enthält. Innerhalb eines digitalen Synthesizers bedeutet unendlich die Wiedergabe eines einzigen Samples.

Die Pulswelle ist eine künstliche Wellenform. Sie kommt also in der "Natur" der akustischen Instrumente nicht vor. Sie wurde deshalb in Synthesizer integriert, da sie eine Vielzahl verschiedener Klangspektren ermöglichte und auch technisch relativ einfach zu realisieren war. Trotzdem erinnert der Klang einiger Pulswellen an bestimmte akustische (oder halbakustische) Instrumente, zum Beispiel an eine (Bass-)Gitarre, ein E-Piano oder teilweise auch an eine Flöte.

Das sicherlich interessanteste Merkmal einer Pulswelle ist die Veränderung der Pulsweite in Echtzeit, die so genannte Pulsweitenmodulation (PWM). Wenn die Pulsweite geändert wird, scheint der Klang dichter zu klingen. Das passiert deshalb, weil im Prinzip der gleiche Vorgang wie beim Verstimmen zweier Oszillatoren untereinander stattfindet, nämlich ein gegenseitiges Auslöschen bestimmter Frequenzen in der erzeugten Wellenform.

Die Dreieck-Wellenform

Die Dreieckwelle (Triangle) ist der Rechteckwelle sehr ähnlich. Sie enthält die gleichen Harmonischen, jedoch in einem anderen Lautstärkeverhältnis. Die Lautstärke jeder Har- monischen ist der Teiler ihres eigenen Quadrates. Zum Beispiel ist die Lautstärke der dritten Harmonischen ein Neuntel (1/32), die der fünften Harmonischen ein fünfundzwanzigstel usw. Die folgenden Abbildungen zeigen den entsprechenden Zusammenhang der Harmonischen:

Additive Bestandteile der Dreieck-Welle

Warum die Dreieck-Welle in Synthesizer so beliebt ist? Sie kann als "Ersatz" für die Sinuswelle genutzt werden, beispielsweise als Suboszillator, um bestimmte Frequenzbereiche zu betonen oder einfach als Frequenzmodulator für andere Oszillatoren. Die Dreieckwelle klingt ähnlich wie ein Holzblasinstrument, beispielsweise eine Klarinette. Weiterhin kann sie zur Erzeugung von Instrumenten wie Vibraphon oder Xylophon genutzt werden.

Eine kurze Einführung in die Granular-Synthese

Die Granularsynthese basiert auf einer einfachen Idee: Anstatt ein ganzes Sample abzuspielen, werden nur sehr kurze Abschnitte des Samples - die sogenannten Grains gespielt. Diese Grains können in beliebiger Reihenfolge abgespielt werden. Jedes Mal, wenn ein Grain endet, beginnt ein neues. Um Diskontinuitäten bei der Wiedergabe zu vermeiden und Artefakte zu minimieren, werden Hüllkurven auf die Grains angewendet. Die Granularsynthese kann verwendet werden, um aus allen Arten von Samples interessante Spektren zu extrahieren, die Soundeffekte erzeugen, indem ein Sample vollständig durchgemischt wird oder zum Beispiel für LoFi-Timestretching

Sehr kurze Grains erzeugen Klänge mit einer individuellen Tonhöhe. Aus diesem Grund können Sie auch Samples ohne bestimmte Tonhöhe verwenden (z. B. Drumloops und Soundeffekte), um daraus gestimmte Spektren zu extrahieren. Klänge mit längeren Grains werden normalerweise mit der Tonhöhe des Original-Samples abgespielt.

Wenn Sie immer denselben Abschnitt eines Samples wiedergeben, kann der Sound statisch klingen. Mit den Particle-Generator-Parametern können Sie das kompensieren und dem Sound mehr Lebendigkeit verleihen. Durch Hinzufügen weiterer Grain-Stream (Kernels) können die Grain- und Sounddichte erhöht werden, um einen reichhaltigeren Klang zu erzeugen.

Einführung in ein Synthesizer-Filter

Nachdem das Audiosignal die Oszillatoren verlässt, gelangt es in die Filtersektion (Dual Analog Filters und Digital Former). Quantum bietet zwei Filtereinheiten mit jeweils eigenen Einstellungen. Der Signalfluss zu den Filtern kann über die Routing-Funktion auf der Filterseite gesteuert werden.

Das Filter gehört zu den wichtigsten Komponenten eines Synthesizers und prägt den Klangcharakter ganz entscheidend.

Zur Erklärung der Grundfunktionen eines Filters nutzen wir den wohl bekanntesten und am meisten verwendeten Filtertyp: das Tiefpassfilter.

Das Tiefpassfilter dämpft Frequenzen oberhalb einer bestimmten Eckfrequenz. Darunter liegende Frequenzen werden nur minimal beeinflusst. Den Bereich unterhalb der Eckfrequenz nennt man Durchlassbereich, den Bereich darüber Sperrbereich. Die Quantum Analogfilter dämpfen die Frequenzen im Sperrbereich mit einer bestimmten Flankensteilheit (12. bzw. 24 dB/Oktave). Die nachstehende Abbildung zeigt die prinzipielle Arbeitsweise eines solchen Tiefpassfilters:

Anschaulich gesehen stellen 24dB Dämpfung eine Absenkung um ca. 94% des Ursprungswertes dar. Betrachtet man die Dämpfung zwei Oktaven oberhalb der Eckfrequenz, so beträgt die Absenkung bereits über 99%. Ein derartiges Audiosignal ist fast nicht mehr zu hören.

Die Quantum-Filter bieten weiterhin einen Resonanzparameter. Resonanz bezeichnet die Anhebung eines schmalen Frequenzbereichs um die Eckfrequenz. Die nachstehende Abbildung zeigt die Wirkung des Resonanzparameters auf den Frequenzgang des Filters:

Bei hoher Anhebung der Resonanz kommt es zur Selbstoszillation des Filters, d.h. das Filter schwingt hörbar mit seiner eingestellten Eckfrequenz, ohne dass ein Eingangssignal anliegen muss.

185

Aktualisieren des Betriebssystems

Der Quantum bietet eine wartungsfreundliche Funktion, die es ermöglicht, die interne Betriebssoftware ohne Austausch von Teilen zu aktualisieren.

Alle Software-Updates kommen in Form einer .bin Datei, welche direkt auf eine SD-Karte kopiert werden kann. Die effektivste Möglichkeit, um diese Datei zu erhalten, ist ein "Download" von unserer Internet Web-Seite:

http://www.waldorfmusic.com/quantum

Achten Sie darauf, folgende Bestandteile zu laden:

• quantum.update.bin

So aktualisieren Sie die Systemsoftware des Quantum:

- Kopieren Sie die .bin-Datei ins das Hauptverzeichnis einer geeigneten SD-Karte.
- Führen Sie diese SD-Karte in den SD-Card-Slot des Quantum ein.
- Drücken Sie den **Global**-Taster, um die Global-Seite aufzurufen.
- Tippen Sie im Display auf den **System**-Reiter, um die System-Unterseite zu öffnen. Tippen Sie dort auf den **Info**-Reiter.

- Tippen Sie auf die **Update**-Schaltfläche und folgenden den Anweisungen im Display.
- Nach Installation des Update-Files schreibt der Quantum dieses automatisch in seinen Flash-Speicher.
- Warten Sie, bis der Vorgang abgeschlossen ist. Wenn die Aktualisierung erfolgreich war, fährt der Quantum automatisch herunter und startet dann neu.
- Schalten Sie während der Updateprozedur auf keinen Fall den Quantum aus. Als Folge kann ein völliger Datenverlust auftreten, so dass der Quantum nicht mehr funktionsfähig ist!

FAQ - Häufig gestellte Fragen

Wie mache ich ein Backup meiner Patches?

Navigieren Sie zu Load -> Actions -> Export. Dort können Sie Ihre Patches auswählen und exportieren. Bitte beachten Sie, dass die den Patches zugewiesenen Samples nicht automatisch mitgespeichert werden.

Meine SD-Karte wird vom Quantum nicht erkannt.

Vergewissern Sie sich, dass die SD-Karte richtig herum eingelegt ist. Sie sollte in FAT oder FAT32 formatiert sein. Es sind keine Inkompatibilitäten mit irgendeiner SD-Karte bekannt.

Quantum erkennt die Aktualisierungsdatei nicht, obwohl sie sich im obersten Verzeichnis der SD-Karte befindet.

Bitte warten sie etwas, manchmal benötigt der Quantum bis zu einer Minute nach dem Einsetzen einer SD-Karte, bevor diese und die Aktualisierungsdatei erkannt werden. Bei Bedarf sollten Sie es zwei- bis dreimal versuchen. Das Öffnen der ZIP-Datei reicht nicht aus, die Datei quantum.update.bin muss tatsächlich entpackt sein. Möglicherweise wurde Ihre Datei auch während des Downloads beschädigt. Laden Sie die Datei erneut.

Was ist der Unterschied zwischen dem Latchund dem Chord-Modus?

Im Latch-Modus wird eine Keyboard-Taste gehalten, wenn Sie diese Taste gedrückt halten, bis Sie dieselbe Taste erneut auslösen. Dann klingt die gespielte Note aus. Im Chord-Modus wird nur die letzte Note oder der letzte Akkord gehalten, bis Sie die nächste(n) Taste(n) drücken. Dann werden die vorherigen Noten losgelassen und die neue Note oder der neue Akkord werden gehalten.

Mein Gerät wird nicht über USB erkannt.

- Vergewissern Sie sich, dass Ihr Gerät direkt und nicht über einen Hub mit Ihrem Computer verbunden ist.
- Verwenden Sie den hinteren USB-Anschluss Ihres Computers, nicht den vorderen.
- Trennen Sie alle anderen USB-Geräte, die derzeit nicht benötigt werden, von Ihrem Computer.
- Tauschen Sie das USB-Kabel aus oder versuchen Sie es mit einem anderen Computer.
- Unter macOS: Wählen Sie im Apple-Menü "Über diesen Mac". Klicken Sie dort auf "Systembericht". In der Menüliste auf der linken Seite können Sie unter Hardware die Option "USB" auswählen. Prüfen Sie, ob Ihr Gerät dort aufgeführt ist.

• Unter Windows: Drücken Sie die Win-Taste + R. Geben Sie **devmgmt.msc** ein und drücken Sie **OK**. Prüfen Sie, ob Ihr Gerät dort aufgeführt ist. Wenn es als "Unbekanntes Gerät" und ein schwarz-gelbes Warnzeichen angezeigt wird, deinstallieren Sie den Treiber. Trennen Sie dann das Instrument, starten es neu und schließen Sie es wieder an.

Ich haben eine bestimmte Vorstellung eines Sounds. Ist die Umsetzung im Quantum möglich?

In vielen Fällen lassen sich in der Modulationsmatrix spezielle Wünsche zur Klanggestaltung realisieren. Denken Sie daran, dass Sie einen **Control Amount** verwenden und einer Modulation hinzufügen können. Zum Beispiel lässt sich so ein unipolarer LFO erzeugen, indem ein konstantem **Control Amount** innerhalb des gleichen Modulations-Slots verwendet wird.

Der Quantum ist abgestürzt!

Wir empfehlen Ihnen, zuallersert das Betriebssystem des Quantum zu aktualisieren. Wir veröffentlichen desöfteren eine neue Firmware mit neuen Funktionen Der Vorgang dauert weniger als eine Minute. Das Betriebssystem des Quantum läuft wirklich stabil, so dass es selten zu Abstürzen kommt. Wenn der Quantum trotzdem abstürzt, generieren Sie bitte eine Systemprotokolldatei, indem Sie **Global -> System -> Support Log** wählen. Geben Sie beim Speichern Ihren Namen und das Datum des Absturzes in den Dateinamen ein. Schicken Sie uns diese Datei und wir schauen uns das an.

Welche Fußschalter und Expression-Pedale kann ich mit meinem Gerät verwenden?

Jedes Haltepedal mit einem 6.3-mm-Klinkenstecker, der beim Drücken den Kontakt schließt, sollte funktionieren. Wir empfehlen das Fatar/Studiologic VFP1/10. Verwenden Sie nur ein einzelnes Pedal, Doppelpedale funktionieren nicht.

Für das Schweller/Continuous-Pedal empfehlen wir die Verwendung eines Fatar/Studiologic VP-27. Ansonsten sollten auch andere Pedale mit einem maximalem Widerstand von 10k funktionieren.

Sowohl für Sustain als auch für Continuous sollten Pedale, die mit Fatar, Roland, Moog, Kurzweil und M-Audio kompatibel sind, ebenfalls funktionieren. Die Korg/Yamaha-Modelle funktionieren möglicherweise **nicht**.

Sind die Ausgänge meines Geräts symmetrisch oder unsymmetrisch?

Dieses Gerät verfügt über unsymmetrische Ausgänge. Wir empfehlen deshalb, unsymmetrische Kabel zu nutzen.

Sendet mein Gerät Audio über seine USB-Verbindung?

Nein. Dieses Gerät sendet und empfängt nur MIDI-Daten über USB. Das Übertragen von Audio oder Dateien ist nicht möglich.

Kann ich Quantum an der Aluminiumstange auf der Rückseite anheben?

Ja, Sie können den Quantum anheben und mit der Stange als Griff transportieren.

Modulationsquellen und -ziele

Modulationquellen (Source)

Quelle	Beschreibung
Off	Keine Modulationsquelle
Amp Env	Signal der Verstärkerhüllkurve
Filter1 Env	Signal der Filter 1-Hüllkurve
Filter2 Env	Signal der Filter 1-Hüllkurve
Free Env1	Signal der Free 1-Hüllkurve
Free Env2	Signal der Free 2-Hüllkurve
Free Env3	Signal der Free 3-Hüllkurve
LFO 1	LFO 1-Signal
LFO 2	LFO 2-Signal
LFO 3	LFO 3-Signal
LFO 4	LFO 4-Signal
LFO 5	LFO 5-Signal
LFO 6	LFO 6-Signal
Komplex	Komplex Modulator-Signal
Wheel	Modulationsrad (CC #1)
Pitchbend	MIDI Pitchbend-Signal
After Touch	Aftertouch-Signal des Keyboards
Pedal	MIDI Sustain-Pedal (CC #64)

Expression	MIDI Expression-Pedal (CC #11)
Breath Control	MIDI Breath Controller (CC #2)
CC 22 - CC 31	MIDI CC #22 - #31
Keytrack	MIDI Notennummer
Velocity	MIDI-Anschlagstärke
Voice Number	Anzahl der gespielten Stimmen
Unisono Idx	Anzahl der Unisono-Stimmen
Poly Idx	Anzahl der aktiven Stimmen
Rand Trig	Random Trigger-Signal unipolar
Rand Trig Bipol	Random Trigger-Signal bipolar
Constant	Konstanter Modulationswert
Mod Pad X	Modulation Pad Position X
Mod Pad Y	Modulation Pad Position Y
SeqParam 1 - 4	Step Sequenzer-Parameterwerte

Modulationziele (Destination)

Ziel	Beschreibung	
Off	Kein Modulationsziel	
Pitch	Globale Tonhöhe aller drei Oszillatoren	
Osc1/Osc2/Osc3 Pitch	Tonhöhe von Oszillator 13	
Osc1/Osc2/Osc3 Mix	Lautstärke von Oszillator 13	

Osc1/Osc2/Osc3 Pan	Panorama von Oszillator 13	
WT1/WT2/WT3 Positi- on	Wavetable Position von Oszil- lator 13	
WT1/WT2/WT3 Travel	Wavetable Travel von Oszilla- tor 13	
WT1/WT2/WT3 Noisy	Wavetable Noisy von Oszilla- tor 13	
WT1/WT2/WT3 Brilliance	Wavetable Brilliance von Oszillator 13	
WT1/WT2/WT3 FX	Wavetable FX von Oszillator 13	
WT1/WT2/WT3 Table	Wavetable-Auswahl von Os- zillator 13	
WF1/WF2/WF3 Warp	Waveform Warp von Oszilla- tor 13	
WF1/WF2/WF3 Sync	Waveform Sync von Oszillator 13	
WF1/WF2/WF3 Detune	Waveform Detune von Oszil- lator 13	
PT1/PT2/PT3 Length	Particle Length von Oszillator 13	
PT1/PT2/PT3 Gate	Particle Gate von Oszillator 13	
PT1/PT2/PT3 Jitter	Particle Jitter von Oszillator 13	

PT1/PT2/PT3 Attack	Particle Attack von Oszillator 13
PT1/PT2/PT3 Decay	Particle Decay von Oszillator 13
PT1/PT2/PT3 Pos	Particle Position von Oszilla- tor 13
PT1/PT2/PT3 Travel	Particle Travel von Oszillator 13
PT1/PT2/PT3 PSpread	Particle Pitch Spread von Oszillator 13
RS1/RS2/RS3 Timbre	Resonator Timbre von Oszil- lator 13
RS1/RS2/RS3 Exciter	Resonator Exciter von Oszilla- tor 13
RS1/RS2/RS3 Spread	Resonator Spread von Oszilla- tor 13
RS1/RS2/RS3 Q	Resonator Q von Oszillator 13
DF Amount	Digital Filter Amount (basie- rend auf dem gewählten Typ)
DF Color	Digital Filter Color (basierend auf dem gewählten Typ)
DF Pan	Digital Filter-Panorama
DF Level	Digiatal Filter-Lautstärke

F1 Cutoff/F2 Cutoff	Cutoff von Filter 1/2	
F1 Reso/F2 Reso	Resonanz von Filter 1/2	
Filter Pan	Analog Filter-Panorama	
Filter Level	Analog Filter-Lautstärke	
VCA	VCA	
AmpEnv Attack	Attack der Amp Envelope	
AmpEnv Decay	Decay der Amp Envelope	
AmpEnv Sustain	Sustain-Pegel der Amp Enve- lope	
AmpEnv Release	Release der Amplifier Envelo- pe	
Filt1/2 Env Attack	Attack der Filter Envelope 1/2	
Filt1/2 Env Decay	Decay der Filter Envelope 1/2	
Filt1/2 Env Sustain	Sustain-Pegel der Filter Enve- lope 1/2	
Filt1/2 Env Release	Release der Filter Envelope 1/2	
Free1/2/3 Env Attack	Attack der Free Envelope 1/2/3	
Free1/2/3 Env Decay	Decay der Free Envelope 1/2/3	
Free1/2/3 Env Sustain	Sustain-Pegel der Free Enve- lope 1/2/3	

Free1/2/3 Env Relealse	Release der Free Envelope 1/2/3	
FX1/2/3/4/5 DryWet	FX Dry Wet für Effect 15	
FX1/2/3/4/5 Control	FX Control für Effect 15 (basierend auf dem gewählten FX-Typ)	
Volume	Amplifier-Ausgangspegel	
Pan	Output-Panorama	
LF01/2/3/4/5/6 Speed	Geschwindigkeit von LFO 16	
LF01/2/3/4/5/6 Gain	Intensität von LFO 16	
Komplex Speed	<- siehe Zielbezeichnung	
Komplex Blend	<- siehe Zielbezeichnung	
Komplex Entropy	<- siehe Zielbezeichnung	
Komplex Warp	<- siehe Zielbezeichnung	
Komplex Gain	<- siehe Zielbezeichnung	
Glide Rate	<- siehe Zielbezeichnung	
Chorus DryWet	<- siehe Zielbezeichnung	
Chorus Depth	<- siehe Zielbezeichnung	
Chorus Speed	<- siehe Zielbezeichnung	
Chorus Feedback	<- siehe Zielbezeichnung	
Phaser DryWet	<- siehe Zielbezeichnung	
Phaser Depth	<- siehe Zielbezeichnung	
Phaser Speed	<- siehe Zielbezeichnung	

Phaser Feedback	<- siehe Zielbezeichnung
Phaser Spread	<- siehe Zielbezeichnung
Flanger DryWet	<- siehe Zielbezeichnung
Flanger Depth	<- siehe Zielbezeichnung
Flanger Speed	<- siehe Zielbezeichnung
Flanger Feedback	<- siehe Zielbezeichnung
Reverb Gain	<- siehe Zielbezeichnung
Reverb Time	<- siehe Zielbezeichnung
Reverb Color	<- siehe Zielbezeichnung
Delay DryWet	<- siehe Zielbezeichnung
Delay Feedback	<- siehe Zielbezeichnung
Delay Time L	<- siehe Zielbezeichnung
Delay Time R	<- siehe Zielbezeichnung
EQ DryWet	<- siehe Zielbezeichnung
EQ FreqShift	<- siehe Zielbezeichnung
Drive DryWet	<- siehe Zielbezeichnung
Drive Amount	<- siehe Zielbezeichnung
Drive Gain	<- siehe Zielbezeichnung
Compress Ratio	<- siehe Zielbezeichnung
Compress Thresh	<- siehe Zielbezeichnung
Arp/Seq RelGate	<- siehe Zielbezeichnung
Arp/Seq Swing	<- siehe Zielbezeichnung
Seq Length	<- siehe Zielbezeichnung

*■*waldorf

Technische Daten

Stromversorgung

Versorgungsspannung:	100 – 240 V AC / 47-	63 Hz
Maximale Stromaufnahme	:	1.3 A
Maximale Leistungsaufnah	ime:	50 W

Abmessungen und Gewicht

Breite:	1006 mm
Tiefe:	401 mm
Höhe (einschl. Bedienelemente):	131 mm
Gesamtgewicht:	17,8 kg

Glossar

Aftertouch

Die meisten modernen MIDI-Keyboards besitzen die Fähigkeit, Aftertouch-Meldungen zu erzeugen. Drückt man bei einem derartigen Keyboard eine bereits gehaltene Note fest hinunter, so generiert dieser "Nachdruck" MIDI- Meldungen. Dies kann dazu verwendet werden um dem Klangcharakter zusätzliche Ausdruckskraft (z.B. durch Vibrato) zu verleihen.

Aliasing

Aliasing ist ein Effekt, der auftritt, wenn ein Signal mit zu niedriger Samplingrate abgetastet wird. Frequenzen oberhalb der halben Samplingrate tauchen hierbei im hörbaren Bereich wieder auf und machen sich meist störend bemerkbar. Aliasing entsteht auch durch Verzerrung des digitalen Signals, wenn die hierdurch hinzukommenden Obertöne höher als die halbe Samplingrate sind.

Amount

Bezeichnet die Stärke einer Modulation, also die Modulationstiefe, die auf einen Parameter wirkt.

Amplifier

= engl. Verstärker. Ein Baustein, der die Lautstärke eines Klanges anhand des Steuersignals verändert. Dieses Steuersignal wird meistens von einer Hüllkurve erzeugt.

Arpeggiator

Ein Arpeggiator ist ein Gerät, das einen eingehenden Akkord in seine Einzeltöne zerlegt und rhythmisch wiederholt. Dabei lassen sich meist verschiedene Wiederholmuster vorgeben, um einen weiten Anwendungsbereich zu erfassen. Typische Parameter eines Arpeggiators sind Oktavbereich, Richtung, Geschwindigkeit und Notenlänge.

Attack

Parameter einer Hüllkurve. Attack ist ein Begriff für die Anstiegsgeschwindigkeit einer Hüllkurve von ihrem Startwert bis zur Maximalauslenkung. Die Attackphase beginnt unmittelbar nach Eingang eines Triggersignals, z.B. Auslösen einer Note auf dem Keyboard.

Clipping

Clipping ist eine Verzerrung, die auftritt, sobald ein Signalpegel seine maximal zulässige Obergrenze überschreitet. Das Aussehen eines solchen "geclippten" Signals ist davon abhängig, in welchem Zusammenhang die Verzerrung entsteht. In einem analogen System wird das Signal auf seinen Maximalpegel begrenzt. In einem digitalen System ist Clipping gleichzusetzen mit einem numerischen Überlauf, bei dem die Polarität des Signals oberhalb des Maximalwertes umgekehrt wird.

Control Change (Controllers)

Mit Hilfe dieser MIDI-Meldungen ist es möglich, das Klangverhalten eines Tonerzeugers zu verändern.

Die Meldung besteht im Wesentlichen aus zwei Teilen:

• der Controller-Nummer, die bestimmt, was beeinflusst wird. Sie kann zwischen 0 und 127 liegen,

• dem Controller-Wert, der bestimmt, wie stark die Modifikation vorgenommen wird.

Beispiele für den Einsatz von Controllern sind langsam einsetzendes Vibrato oder Beeinflussung der Filtereckfrequenz.

Decay

Parameter einer Hüllkurve. Decay bezeichnet die Absinkgeschwindigkeit einer Hüllkurve unmittelbar nach Erreichen des Maximalwertes. Die Decay-Phase schließt sich unmittelbar an die Attack-Phase an. Sie endet, wenn die Hüllkurve ihren mit Sustain eingestellten Haltepegel erreicht hat.

Envelope

Siehe Hüllkurve.

Filter

Ein Filter ist ein Baustein, der Signalanteile je nach Frequenz durchlässt oder sperrt. Seine wichtigste Kenngröße ist die Filterfrequenz. Die wichtigsten Bauformen des Filters sind Tiefpass, Hochpass und Bandpass. Ein Tiefpass dämpft alle Frequenzen oberhalb der Eckfrequenz. Ein Hochpass entsprechend alle darunter liegenden. Beim Bandpass werden nur Frequenzen im Bereich um die Mittenfrequenz durchgelassen, alle anderen dämpft dieser Filtertyp. Der am häufigsten eingesetzte Filtertyp ist der Tiefpass.

Filtereckfrequenz

Die Filtereckfrequenz (engl. Cutoff Frequency) ist eine wichtige Kenngröße von Filtern. Ein Tiefpassfilter dämpft Signalanteile oberhalb dieser Frequenz. Signalanteile, die darunter liegen werden unbearbeitet durchgelassen.

Hüllkurve

Eine Hüllkurve erzeugt ein zeitlich veränderliches Steuersignal. Sie wird verwendet, um einen klangformenden Baustein innerhalb eines bestimmten Zeitraumes zu modulieren. Eine Hüllkurve kann zum Beispiel die Filtereckfrequenz eines Tiefpassfilters modulieren. Dadurch öffnet und schließt sich das Filter in Abhängigkeit von der Hüllkurve, wodurch sich die Charakteristik des gefilterten Klanges zeitlich ändert. Gestartet wird die Hüllkurve durch ein Triggersignal, meist eine MIDI-Note. Die klassische Form der Hüllkurve besteht aus vier getrennt einstellbaren Phasen: Attack. Decav. Sustain und Release. Sie wird daher auch als ADSR-Hüllkurve bezeichnet. Sobald ein Triggersignal eintrifft, durchläuft die Hüllkurve die Attackund Decay-Phase, bis sie den Sustain-Pegel erreicht. Dieser wird dann solange gehalten, bis das Triggersignal beendet wird. Danach geht sie in die Release-Phase über, die den Pegel bis zum Minimalwert absenkt.

LFO

LFO ist die Abkürzung für "Low Frequency Oscillator". Ein LFO erzeugt eine periodische Schwingung mit niedriger Frequenz und wählbaren Wellenformen. Er kann, genau wie eine Hüllkurve, zu Modulationszwecken benutzt werden.

Low Pass Filter

Engl. für Tiefpassfilter. Ein Tiefpassfilter ist eine oft in Synthesizern benutzte Filterbauform. Es dämpft alle Signalanteile oberhalb seiner Filtereckfrequenz. Darunter liegende Anteile werden nicht beeinflusst.

MIDI

MIDI ist die Abkürzung für "Musical Instrument Digital Interface", was soviel heißt wie Digital-Schnittstelle für Musikinstrumente. Es wurde Anfang der achtziger Jahre entwickelt, um elektronische Musikinstrumente verschiedener Bauarten und Hersteller miteinander zu verbinden. Gab es bis zu diesem Zeitpunkt keine einheitliche Norm für die Verkopplung mehrerer Klangerzeuger, so stellte MIDI einen entscheidenden Fortschritt dar. Von nun an war es möglich, mittels einfacher und immer gleicher Verbindungsleitungen alle Geräte untereinander zu verbinden.

Die grundsätzliche Vorgehensweise ist dabei folgende: Es wird immer ein Sender mit einem oder mehreren Empfängern verbunden. Soll beispielsweise ein Computer einen Synthesizer spielen, so ist der Computer der Sender und der Synthesizer der Empfänger. Zu diesem Zweck besitzen alle MIDI-Geräte, bis auf wenige Ausnahmen, zwei oder drei Anschlüsse: MIDI In, MIDI Out und ggf. MIDI Thru. Das sendende Gerät gibt die Informationen über seinen MIDI Out Anschluss an die Außenwelt. Über ein Kabel werden die Daten an den MIDI In Anschluss des Empfängers weitergeleitet.

MIDI-Kanal

Wichtiger Bestandteil der meisten Meldungen. Ein Empfangsgerät reagiert nur dann auf eingehende Meldungen, wenn sein eingestellter Empfangskanal identisch mit dem Sendekanal der Meldung ist. Dies ermöglicht die gezielte Informationsübertragung an einen Empfänger. Der MIDI-Kanal ist im Bereich 1 bis 16 wählbar. Darüber hinaus kann ein Gerät auf Omni geschaltet werden. Dadurch empfängt es auf allen 16 Kanälen.

MIDI Clock

Die MIDI Clock-Meldung bestimmt durch ihr zeitliches Auftreten das Tempo eines Stückes. Sie dient dazu, zeitabhängige Vorgänge zu synchronisieren.

Modulation

Modulation ist die Beeinflussung eines klangformenden Bausteins durch eine so genannte Modulationsquelle. Als Modulationsquellen werden im allgemeinen LFO, Hüllkurven oder MIDI-Meldungen benutzt. Das Modulationsziel, also der beeinflusste Klangbaustein, kann z.B. ein Filter oder ein VCA sein.

Note On / Note Off

Dies ist die wichtigste MIDI-Meldung. Sie bestimmt die Tonhöhe und die Anschlagstärke des erzeugten Tons. Der Zeitpunkt ihres Eintreffens ist zugleich der Startzeitpunkt des Tons. Die Tonhöhe ist das Resultat der gesendeten Notennummer. Diese liegt im Bereich von 0 bis 127. Die Anschlagstärke (Velocity) liegt im Bereich von 1 bis 127. Der Wert 0 für die Anschlagstärke bedeutet "Note Off", d.h. die Note wird abgeschaltet.

Panning

Bezeichnet die Panoramaposition eines Klanges im Stereobild.

Pitchbend

Pitchbend ist eine MIDI-Meldung. Obwohl die Pitchbend-Meldung (Tonhöhenbeugung) funktionell den Control-Change Meldungen sehr ähnlich ist, stellt sie einen eigenen Meldungstyp dar. Die Begründung liegt vor allem darin, dass die Pitchbend-Meldung mit wesentlich feinerer Auflösung übertragen wird als "normale" Controller. Damit wird

dem Umstand Rechnung getragen, dass das menschliche Gehör äußerst sensibel für Änderungen der Tonhöhe ist.

Program Change

MIDI-Meldung zum Umschalten des Klangprogrammes. Erlaubt ist die Auswahl zwischen Programmnummer 1 bis 128.

Release

Parameter einer Hüllkurve. Bezeichnet die Absinkgeschwindigkeit der Hüllkurve auf ihren Minimalwert, nachdem das Triggersignal beendet wird. Die Release-Phase beginnt dann unabhängig davon, an welche Stelle die Hüllkurve sich zu diesem Zeitpunkt gerade befindet, also z.B. auch in der Attack-Phase.

Resonanz

= engl. Resonance. Die Resonanz ist ein wichtiger Filterparameter. Sie betont einen schmalen Bereich um die Filterfrequenz herum, was eine Lautstärkeanhebung aller Frequenzen in diesem Bereich bewirkt. Die Resonanz ist ein beliebtes Mittel der Klangverfremdung. Erhöht man die Resonanz sehr stark, so gerät das Filter in Eigenschwingung und generiert eine relativ saubere Sinusschwingung.

Spektrum

Das Spektrum beinhaltet die Intensitäten der einzelnen Frequenzen eines Klanges. Bei einem einfachen Klang können das die harmonischen Obertöne sein, die als klare Spektrallinien erkennbar sind, bei anderen Klängen wie gefärbtem Rauschen ergibt sich eine spektrale Hüllkurve über alle Frequenzen.

Sustain

Parameter einer Hüllkurve. Sustain bezeichnet den Haltepegel einer Hüllkurve, der nach Durchlaufen der Attackund Decay-Phase erreicht wird. Er wird solange gehalten, bis das Triggersignal beendet wird.

System Exclusive Data

Systemexklusive Daten stellen den Zugang zum Innersten eines MIDI-Gerätes dar. Sie ermöglichen den Zugriff auf Daten und Funktionen, die sonst durch keine anderen MIDI-Meldungen repräsentiert werden. "Exklusiv" heißt auch, dass die hier genannten Daten nur für einen einzigen Gerätetyp gelten. Jedes Gerät hat also seine eigenen systemexklusiven Daten. Die häufigsten Einsatzgebiete für diesen Datentyp sind das Übertragen kompletter Speicherinhalte und die vollständige Gerätesteuerung durch einen Computer.

Trigger

Ein Trigger ist ein Auslösesignal für Ereignisse. Die Natur des Triggersignals kann dabei sehr unterschiedlich sein. Bspw. kann eine MIDI-Note oder ein Audio-Signal als Trigger dienen. Das ausgelöste Ereignis kann ebenfalls sehr vielfältig sein. Eine häufig genutzte Anwendung ist das Einstarten einer Hüllkurve.

Volume

Die Lautstärke eines Klanges am Ausgang des Quantum.

USB

Der Universal Serial Bus (USB) ist ein serielles Bussystem zur Verbindung eines Rechners mit externen Geräten. Mit USB ausgestattete Geräte können im laufenden Betrieb miteinander verbunden (Hot-Plugging) und angeschlossene Geräte und deren Eigenschaften automatisch erkannt werden.

Wave

Eine Wave ist im Zusammenhang mit der Wavetable-Synthese eine digital gespeicherte Abbildung eines einzelnen Wellendurchlaufs. Insofern ist eine Wave identisch mit einem Sample, das nach einem einzelnen Wellendurchlauf geloopt ist.

Wavetable

Ein Wavetable ist eine Tabelle aus mehreren Waves, die dem Wavetable-Oszillator zur Verfügung stehen. Dieser gibt die Wave an seiner Abspielposition wieder. Dabei können auch Zwischenpositionen wiedergegeben werden. Die Abspielposition ist zeitlich modulierbar, hierdurch ergeben sich interessante Klangverläufe.

Produktunterstützung

Wenn Sie Fragen zu Ihrem Waldorf-Produkt haben, gibt es mehrere Möglichkeiten, uns zu kontaktieren:

① Schicken Sie uns eine E-Mail. Das ist der mit Abstand effizienteste und schnellste Weg, uns zu erreichen. Ihre Fragen können sofort an die richtige Stelle weitergeleitet und innerhalb kürzester Zeit beantwortet werden.

support@waldorfmusic.de

② Schicken Sie uns einen Brief. Etwas langsamer, dafür jedoch genauso zuverlässig wie eine E-Mail.

Waldorf Music GmbH Lilienthalstr. 7 53424 Remagen, Deutschland

③ Besuchen Sie auch unser Supportforum auf www.waldorfmusic.com

Waldorf Music GmbH • Lilienthalstrasse 7 • D-53424 Remagen © 2019 Waldorf Music GmbH • All rights reserved www.waldorfmusic.com

